【从零开始学习深度学习】35. 门控循环神经网络之门控循环单元(gated recurrent unit,GRU)介绍、Pytorch实现GRU并进行训练预测

简介: 【从零开始学习深度学习】35. 门控循环神经网络之门控循环单元(gated recurrent unit,GRU)介绍、Pytorch实现GRU并进行训练预测

1. 门控循环单元设计

门控循环单元的设计在原始RNN的基础上引入了重置门(reset gate)和更新门(update gate)的概念,从而修改了循环神经网络中隐藏状态的计算方式。

1.1 重置门和更新门

如下图所示,门控循环单元中的重置门和更新门的输入均为当前时间步输入Xt与上一时间步隐藏状态Ht1,输出由激活函数为sigmoid函数的全连接层计算得到。


image.png

1.2 候选隐藏状态

接下来,门控循环单元将计算候选隐藏状态来辅助稍后的隐藏状态计算。如下图所示,我们将当前时间步重置门的输出与上一时间步隐藏状态做按元素乘法(符号为⊙ \odot)。如果重置门中元素值接近0,那么意味着重置对应隐藏状态元素为0,即丢弃上一时间步的隐藏状态。如果元素值接近1,那么表示保留上一时间步的隐藏状态。然后,将按元素乘法的结果与当前时间步的输入连结,再通过含激活函数tanh的全连接层计算出候选隐藏状态,其所有元素的值域为[1,1]


image.png

1.3 隐藏状态


image.png

更新门可以控制隐藏状态应该如何被包含当前时间步信息的候选隐藏状态所更新,如上图所示。假设更新门在时间步ttt<t)之间一直近似1。那么,在时间步'tt之间的输入信息几乎没有流入时间步t的隐藏状态tHt。实际上,这可以看作是较早时刻的隐藏状态Ht1一直通过时间保存并传递至当前时间步t。这个设计可以应对循环神经网络中的梯度衰减问题,并更好地捕捉时间序列中时间步距离较大的依赖关系。

总结:

  • 重置门有助于捕捉时间序列里短期的依赖关系;
  • 更新门有助于捕捉时间序列里长期的依赖关系。

2 读取数据集

为了实现并展示门控循环单元,下面依然使用上一篇文章中的周杰伦歌词专辑数据集来训练模型作词。

数据集获取参见上一篇文章《【从零开始学习深度学习】34. Pytorch-RNN项目实战:RNN创作歌词案例–使用周杰伦专辑歌词训练模型并创作歌曲【含数据集与源码】》。

import numpy as np
import torch
from torch import nn, optim
import torch.nn.functional as F
import sys
sys.path.append("..") 
import d2lzh_pytorch as d2l
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
(corpus_indices, char_to_idx, idx_to_char, vocab_size) = d2l.load_data_jay_lyrics()

3 从零实现门控循环单元并进行歌词训练与预测

3.1 初始化模型参数

对模型参数进行初始化,超参数num_hiddens定义了隐藏单元的个数。

num_inputs, num_hiddens, num_outputs = vocab_size, 256, vocab_size
print('will use', device)
def get_params():
    def _one(shape):
        ts = torch.tensor(np.random.normal(0, 0.01, size=shape), device=device, dtype=torch.float32)
        return torch.nn.Parameter(ts, requires_grad=True)
    def _three():
        return (_one((num_inputs, num_hiddens)),
                _one((num_hiddens, num_hiddens)),
                torch.nn.Parameter(torch.zeros(num_hiddens, device=device, dtype=torch.float32), requires_grad=True))
    
    W_xz, W_hz, b_z = _three()  # 更新门参数
    W_xr, W_hr, b_r = _three()  # 重置门参数
    W_xh, W_hh, b_h = _three()  # 候选隐藏状态参数
    
    # 输出层参数
    W_hq = _one((num_hiddens, num_outputs))
    b_q = torch.nn.Parameter(torch.zeros(num_outputs, device=device, dtype=torch.float32), requires_grad=True)
    return nn.ParameterList([W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q])

3.2 定义模型

定义隐藏状态初始化函数init_gru_state,它返回由一个形状为(批量大小, 隐藏单元个数)的值为0的Tensor组成的元组。

def init_gru_state(batch_size, num_hiddens, device):
    return (torch.zeros((batch_size, num_hiddens), device=device), )

下面根据门控循环单元的计算表达式定义模型。

def gru(inputs, state, params):
    W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q = params
    H, = state
    outputs = []
    for X in inputs:
        Z = torch.sigmoid(torch.matmul(X, W_xz) + torch.matmul(H, W_hz) + b_z)
        R = torch.sigmoid(torch.matmul(X, W_xr) + torch.matmul(H, W_hr) + b_r)
        H_tilda = torch.tanh(torch.matmul(X, W_xh) + torch.matmul(R * H, W_hh) + b_h)
        H = Z * H + (1 - Z) * H_tilda
        Y = torch.matmul(H, W_hq) + b_q
        outputs.append(Y)
    return outputs, (H,)

3.3 训练模型并创作歌词

我们在训练模型时只使用相邻采样。设置好超参数后,我们将训练模型并根据前缀“分开”和“不分开”分别创作长度为50个字符的一段歌词。

num_epochs, num_steps, batch_size, lr, clipping_theta = 160, 35, 32, 1e2, 1e-2
pred_period, pred_len, prefixes = 40, 50, ['分开', '不分开']

我们每过40个迭代周期便根据当前训练的模型创作一段歌词。

d2l.train_and_predict_rnn(gru, get_params, init_gru_state, num_hiddens,
                          vocab_size, device, corpus_indices, idx_to_char,
                          char_to_idx, False, num_epochs, num_steps, lr,
                          clipping_theta, batch_size, pred_period, pred_len,
                          prefixes)

输出:

epoch 40, perplexity 152.550790, time 2.29 sec
 - 分开 我不不 你不我 你不我 你不我 你不我 你不我 你不我 你不我 你不我 你不我 你不我 你不我 你
 - 不分开 一哼我 我不不 你不了我 你不我 你不我 你不我 你不我 你不我 你不我 你不我 你不我 你不我 
epoch 80, perplexity 32.991306, time 2.28 sec
 - 分开 我想要这样的微笑在人人卷戏 爱不再再我 你的美美 你在完人  你在在人的溪边默默默默默著著我 娘子
 - 不分开 我不能再想 我不要再想 我不能再想 我不能再想 我不能再想 我不能再想 我不能再想 我不能再想 我
epoch 120, perplexity 6.238240, time 2.39 sec
 - 分开 我想就这样牵着你的手不放开 爱可不可以简简单单没有伤害 你 靠着我的肩膀 你 在我胸口睡著 一定个
 - 不分开 不知再觉 你是一个人演慢 一直风 三步三步步步四望 连成线背著背默默许下心愿 看远方的星如下听的见
epoch 160, perplexity 1.926641, time 2.64 sec
 - 分开 我不要再宣牵我对你 感感 让给我抬起你有 从杰去真医 你在过人 何都没有 说我该轻的证  从情着头
 - 不分开 不知再觉 你是心蒙 迷迷了中留的寻找 停堡里一只点芜 长满杂草的泥剩 不会骑扫二的胖女还 用拉丁文

4 基于Pytorch的nn.GRU模块实现GRU并进行歌词训练与预测

在PyTorch中我们直接调用nn模块中的GRU类即可。

lr = 1e-2 # 注意调整学习率
gru_layer = nn.GRU(input_size=vocab_size, hidden_size=num_hiddens)
model = d2l.RNNModel(gru_layer, vocab_size).to(device)
d2l.train_and_predict_rnn_pytorch(model, num_hiddens, vocab_size, device,
                                corpus_indices, idx_to_char, char_to_idx,
                                num_epochs, num_steps, lr, clipping_theta,
                                batch_size, pred_period, pred_len, prefixes)

输出:

epoch 40, perplexity 1.017262, time 0.87 sec
 - 分开始乡相信命运 感谢地心引力 让我碰到你 漂亮的让我面红的可爱女人 温柔的让我心疼的可爱女人 透明的让
 - 不分开始打呼 管家是一只会说法语举止优雅的猪 吸血前会念约翰福音做为弥补 拥有一双蓝色眼睛的凯萨琳公主 专
epoch 80, perplexity 1.015187, time 1.22 sec
 - 分开始乡相信命运 感谢地心引力 让我碰到你 漂亮的让我面红的可爱女人 温柔的让我心疼的可爱女人 透明的让
 - 不分开 它一定实现 娘子 娘子却依旧每日 折一枝杨柳 你在那里 在小村外的溪边河口默默等著我 娘子依旧每日
epoch 120, perplexity 1.013440, time 0.85 sec
 - 分开始乡相信命运 感谢地心引力 让我碰到你 漂亮的让我面红的可爱女人 温柔的让我心疼的可爱女人 透明的让
 - 不分开 陷入了危险边缘Baby  我的世界已狂风暴雨 Wu  爱情来的太快就像龙卷风 离不开暴风圈来不及逃
epoch 160, perplexity 1.910635, time 0.82 sec
 - 分开的话你甘会听 有教堂有城堡 每天忙碌地的寻找 到底什么我有多烦恼  没有你烦我有多烦恼  没有多烦恼
 - 不分开 别发抖 快给我抬起头 有话去对医药箱说 别怪我 别发抖 快给我抬起头 有话去对医药箱说 别怪我 别

总结

  • 门控循环神经网络可以更好地捕捉时间序列中时间步距离较大的依赖关系。
  • 门控循环单元引入了门的概念,从而修改了循环神经网络中隐藏状态的计算方式。它包括重置门、更新门、候选隐藏状态和隐藏状态。
  • 重置门有助于捕捉时间序列里短期的依赖关系。
  • 更新门有助于捕捉时间序列里长期的依赖关系。
相关文章
|
4天前
|
并行计算 PyTorch 算法框架/工具
基于CUDA12.1+CUDNN8.9+PYTORCH2.3.1,实现自定义数据集训练
文章介绍了如何在CUDA 12.1、CUDNN 8.9和PyTorch 2.3.1环境下实现自定义数据集的训练,包括环境配置、预览结果和核心步骤,以及遇到问题的解决方法和参考链接。
基于CUDA12.1+CUDNN8.9+PYTORCH2.3.1,实现自定义数据集训练
|
9天前
|
机器学习/深度学习 算法 自动驾驶
深度学习之分布式智能体学习
基于深度学习的分布式智能体学习是一种针对多智能体系统的机器学习方法,旨在通过多个智能体协作、分布式决策和学习来解决复杂任务。这种方法特别适用于具有大规模数据、分散计算资源、或需要智能体彼此交互的应用场景。
25 4
|
13天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的迁移学习技术
本文探讨了深度学习中的迁移学习技术,分析了其在提高模型训练效率和效果方面的优势。通过对迁移学习的定义、原理和应用案例的详细阐述,展示了如何有效利用预训练模型解决实际问题。
40 6
|
2月前
|
机器学习/深度学习 并行计算 PyTorch
GPU 加速与 PyTorch:最大化硬件性能提升训练速度
【8月更文第29天】GPU(图形处理单元)因其并行计算能力而成为深度学习领域的重要组成部分。本文将介绍如何利用PyTorch来高效地利用GPU进行深度学习模型的训练,从而最大化训练速度。我们将讨论如何配置环境、选择合适的硬件、编写高效的代码以及利用高级特性来提高性能。
204 1
|
2月前
|
机器学习/深度学习 并行计算 PyTorch
PyTorch与DistributedDataParallel:分布式训练入门指南
【8月更文第27天】随着深度学习模型变得越来越复杂,单一GPU已经无法满足训练大规模模型的需求。分布式训练成为了加速模型训练的关键技术之一。PyTorch 提供了多种工具来支持分布式训练,其中 DistributedDataParallel (DDP) 是一个非常受欢迎且易用的选择。本文将详细介绍如何使用 PyTorch 的 DDP 模块来进行分布式训练,并通过一个简单的示例来演示其使用方法。
35 2
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
【机器学习】机器学习、深度学习、强化学习和迁移学习简介、相互对比、区别与联系。
机器学习、深度学习、强化学习和迁移学习都是人工智能领域的子领域,它们之间有一定的联系和区别。下面分别对这四个概念进行解析,并给出相互对比、区别与联系以及应用场景案例分析。
32 1
|
2月前
|
机器学习/深度学习 PyTorch 测试技术
深度学习入门:使用 PyTorch 构建和训练你的第一个神经网络
【8月更文第29天】深度学习是机器学习的一个分支,它利用多层非线性处理单元(即神经网络)来解决复杂的模式识别问题。PyTorch 是一个强大的深度学习框架,它提供了灵活的 API 和动态计算图,非常适合初学者和研究者使用。
35 0
|
2月前
|
机器学习/深度学习 数据采集 监控
深度学习之在线学习与适应
基于深度学习的在线学习与适应,旨在开发能够在不断变化的环境中实时学习和调整的模型,使其在面对新数据或新任务时能够迅速适应并维持高性能。
41 0
|
2月前
|
机器学习/深度学习 人工智能 算法
AI人工智能(ArtificialIntelligence,AI)、 机器学习(MachineLearning,ML)、 深度学习(DeepLearning,DL) 学习路径及推荐书籍
AI人工智能(ArtificialIntelligence,AI)、 机器学习(MachineLearning,ML)、 深度学习(DeepLearning,DL) 学习路径及推荐书籍
88 0
|
2月前
|
存储 PyTorch API
Pytorch入门—Tensors张量的学习
Pytorch入门—Tensors张量的学习
18 0
下一篇
无影云桌面