【从零开始学习深度学习】29.卷积神经网络之GoogLeNet模型介绍及用Pytorch实现GoogLeNet模型【含完整代码】

简介: 【从零开始学习深度学习】29.卷积神经网络之GoogLeNet模型介绍及用Pytorch实现GoogLeNet模型【含完整代码】

GoogLeNet网络架构于2014年由Google团队提出,并且在2014年的ImageNet图像识别挑战赛中大放异彩 。GoogLeNet吸收了NiN中网络串联网络的思想,并在此基础上做了很大改进。在随后几年GoogLeNet经历了从v1、v2、v3、v4几个版本的改进过程。本文主要介绍最基础的GoogLeNet v1网络架构。

1. Inception 块的基础结构

**GoogLeNet的成功主要得益于基础卷积块—Inception块,整个GoogLeNet的主体架构可以看成多个Inception模块堆叠而成。**Inception块结构如下图所示:

由上图可以看出,Inception块里有4条并行的线路。前3条线路使用窗口大小分别是3×35×5卷积层来抽取不同空间尺寸下的信息,其中中间2个线路会对输入先做1×1卷积来减少输入通道数,以降低模型复杂度。第四条线路则使用3×3最大池化层,后接1×1卷积层来改变通道数。4条线路都使用了合适的填充来使输入与输出的高和宽一致。最后我们将每条线路的输出在通道维上连结,并输入接下来的层中去。

Inception 结构中采用1×13×35×5三种卷积核的卷积层进行并行提取特征,这可以加大网络模型的宽度,不同大小的卷积核也就意味着原始Inception 结构可以获取到不同大小的感受野,上图中的最后合并就是将不同尺度特征进行深度融合。

Inception块中可以自定义的超参数是每个层的输出通道数,以此来控制模型复杂度。

import time
import torch
from torch import nn, optim
import torch.nn.functional as F
import sys
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class Inception(nn.Module):
    # c1 - c4为每条线路里层的输出通道数
    def __init__(self, in_c, c1, c2, c3, c4):
        super(Inception, self).__init__()
        # 线路1,单1 x 1卷积层
        self.p1_1 = nn.Conv2d(in_c, c1, kernel_size=1)
        # 线路2,1 x 1卷积层后接3 x 3卷积层
        self.p2_1 = nn.Conv2d(in_c, c2[0], kernel_size=1)
        self.p2_2 = nn.Conv2d(c2[0], c2[1], kernel_size=3, padding=1)
        # 线路3,1 x 1卷积层后接5 x 5卷积层
        self.p3_1 = nn.Conv2d(in_c, c3[0], kernel_size=1)
        self.p3_2 = nn.Conv2d(c3[0], c3[1], kernel_size=5, padding=2)
        # 线路4,3 x 3最大池化层后接1 x 1卷积层
        self.p4_1 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
        self.p4_2 = nn.Conv2d(in_c, c4, kernel_size=1)
    def forward(self, x):
        p1 = F.relu(self.p1_1(x))
        p2 = F.relu(self.p2_2(F.relu(self.p2_1(x))))
        p3 = F.relu(self.p3_2(F.relu(self.p3_1(x))))
        p4 = F.relu(self.p4_2(self.p4_1(x)))
        return torch.cat((p1, p2, p3, p4), dim=1)  # 在通道维上连结输出

2. GoogLeNet模型结构

GoogleLeNet-V1模型结构如下:

从图中可以看出,GoogLeNet主体架构是利用改进之后的Inception结构堆积而成22层层卷积神经网络。同时GoogLeNet在全连接层之前采用了平均池化层来降低特征,该想法来自也NIN事实证明可以将TOP1 accuracy提高0.6%。从上图也可以看出GoogLeNet网络架构较深,如果梯度从最后一层传递到第一层,可能会出现梯度消失的情况。因此为了避免梯度消失,网络额外增加了2个辅助的softmax用于向前传导梯度。

其各层参数示意图如下:

3. Pytorch构建GoogLeNet模型

GoogLeNet跟VGG一样,在主体卷积部分中使用5个模块(block),每个模块之间使用步幅为2的3×3最大池化层来减小输出高宽。第一模块使用一个64通道的7×7卷积层。

b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
                   nn.ReLU(),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

第二模块使用2个卷积层:首先是64通道的1×1卷积层,然后是将通道增大3倍的3 × 3 卷积层。它对应Inception块中的第二条线路。

b2 = nn.Sequential(nn.Conv2d(64, 64, kernel_size=1),
                   nn.Conv2d(64, 192, kernel_size=3, padding=1),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

第三模块串联2个完整的Inception块。第一个Inception块的输出通道数为64+128+32+32=256,其中4条线路的输出通道数比例为64:128:32:32=2:4:1:1。其中第二、第三条线路先分别将输入通道数减小至96/192=1/216/192=1/12后,再接上第二层卷积层。第二个Inception块输出通道数增至128+192+96+64=480,每条线路的输出通道数之比为128:192:96:64=4:6:3:2。其中第二、第三条线路先分别将输入通道数减小至128/256=1/232/256=1/8

b3 = nn.Sequential(Inception(192, 64, (96, 128), (16, 32), 32),
                   Inception(256, 128, (128, 192), (32, 96), 64),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

image.png

b4 = nn.Sequential(Inception(480, 192, (96, 208), (16, 48), 64),
                   Inception(512, 160, (112, 224), (24, 64), 64),
                   Inception(512, 128, (128, 256), (24, 64), 64),
                   Inception(512, 112, (144, 288), (32, 64), 64),
                   Inception(528, 256, (160, 320), (32, 128), 128),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))

第五模块有输出通道数为256+320+128+128=832384+384+128+128=1024的两个Inception块。其中每条线路的通道数的分配思路和第三、第四模块中的一致,只是在具体数值上有所不同。需要注意的是,第五模块的后面紧跟输出层,该模块同NiN一样使用全局平均池化层来将每个通道的高和宽变成1。最后我们将输出变成二维数组后接上一个输出个数为标签类别数的全连接层。

b5 = nn.Sequential(Inception(832, 256, (160, 320), (32, 128), 128),
                   Inception(832, 384, (192, 384), (48, 128), 128),
                   d2l.GlobalAvgPool2d())
net = nn.Sequential(b1, b2, b3, b4, b5, 
                    d2l.FlattenLayer(), nn.Linear(1024, 10))

GoogLeNet模型的计算复杂,而且不如VGG那样便于修改通道数。此处我们将输入的高和宽从224降到96来简化计算。下面演示各个模块之间的输出的形状变化。

net = nn.Sequential(b1, b2, b3, b4, b5, d2l.FlattenLayer(), nn.Linear(1024, 10))
X = torch.rand(1, 1, 96, 96)
for blk in net.children(): 
    X = blk(X)
    print('output shape: ', X.shape)

输出:

output shape:  torch.Size([1, 64, 24, 24])
output shape:  torch.Size([1, 192, 12, 12])
output shape:  torch.Size([1, 480, 6, 6])
output shape:  torch.Size([1, 832, 3, 3])
output shape:  torch.Size([1, 1024, 1, 1])
output shape:  torch.Size([1, 1024])
output shape:  torch.Size([1, 10])

4. 获取数据和训练GoogLeNet模型

我们使用高和宽均为96像素的图像来训练GoogLeNet模型。训练使用的图像依然来自Fashion-MNIST数据集。

batch_size = 128
# 如出现“out of memory”的报错信息,可减小batch_size或resize
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
lr, num_epochs = 0.001, 5
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
d2l.train_ch5(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs)

输出:

training on  cuda
epoch 1, loss 0.0087, train acc 0.570, test acc 0.831, time 45.5 sec
epoch 2, loss 0.0032, train acc 0.851, test acc 0.853, time 48.5 sec
epoch 3, loss 0.0026, train acc 0.880, test acc 0.883, time 45.4 sec
epoch 4, loss 0.0022, train acc 0.895, test acc 0.887, time 46.6 sec
epoch 5, loss 0.0020, train acc 0.906, test acc 0.896, time 43.5 sec

5.总结

  • Inception块相当于一个有4条线路的子网络。它通过不同窗口形状的卷积层和最大池化层来并行抽取信息,并使用1 × 1 1\times 11×1卷积层减少通道数从而降低模型复杂度。
  • GoogLeNet将多个设计精细的Inception块和其他层串联起来。其中Inception块的通道数分配之比是在ImageNet数据集上通过大量的实验得来的。
  • GoogLeNet和它的后继者们一度是ImageNet上最高效的模型之一:在类似的测试精度下,它们的计算复杂度往往更低。
相关文章
|
1月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
135 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
2月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
356 55
|
15天前
|
机器学习/深度学习 数据可视化 算法
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
神经常微分方程(Neural ODEs)是深度学习领域的创新模型,将神经网络的离散变换扩展为连续时间动力系统。本文基于Torchdyn库介绍Neural ODE的实现与训练方法,涵盖数据集构建、模型构建、基于PyTorch Lightning的训练及实验结果可视化等内容。Torchdyn支持多种数值求解算法和高级特性,适用于生成模型、时间序列分析等领域。
162 77
PyTorch生态系统中的连续深度学习:使用Torchdyn实现连续时间神经网络
|
6天前
|
机器学习/深度学习 存储 算法
近端策略优化(PPO)算法的理论基础与PyTorch代码详解
近端策略优化(PPO)是深度强化学习中高效的策略优化方法,广泛应用于大语言模型的RLHF训练。PPO通过引入策略更新约束机制,平衡了更新幅度,提升了训练稳定性。其核心思想是在优势演员-评论家方法的基础上,采用裁剪和非裁剪项组成的替代目标函数,限制策略比率在[1-ϵ, 1+ϵ]区间内,防止过大的策略更新。本文详细探讨了PPO的基本原理、损失函数设计及PyTorch实现流程,提供了完整的代码示例。
114 10
近端策略优化(PPO)算法的理论基础与PyTorch代码详解
|
7天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
51 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
1月前
|
机器学习/深度学习 监控 算法
基于yolov4深度学习网络的排队人数统计系统matlab仿真,带GUI界面
本项目基于YOLOv4深度学习网络,利用MATLAB 2022a实现排队人数统计的算法仿真。通过先进的计算机视觉技术,系统能自动、准确地检测和统计监控画面中的人数,适用于银行、车站等场景,优化资源分配和服务管理。核心程序包含多个回调函数,用于处理用户输入及界面交互,确保系统的高效运行。仿真结果无水印,操作步骤详见配套视频。
54 18
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面
本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。
88 31
|
2月前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##

热门文章

最新文章

推荐镜像

更多