【从零开始学习深度学习】25.卷积神经网络之LeNet模型介绍及其Pytorch实现【含完整代码】

本文涉及的产品
函数计算FC,每月15万CU 3个月
简介: 【从零开始学习深度学习】25.卷积神经网络之LeNet模型介绍及其Pytorch实现【含完整代码】

之前我们对Fashion-MNIST数据集中的图像进行分类时,是将28*28图像中的像素逐行展开,得到长度为784的向量,并输入进全连接层中进行计算,这种分类方法有一定的局限性。

  1. 图像在同一列邻近的像素在这个向量中可能相距较远。它们构成的模式可能难以被模型识别。
  2. 对于大尺寸的输入图像,使用全连接层容易造成模型过大。假设输入是高和宽均为1000像素的彩色照片(含3个通道)。即使全连接层输出个数仍是256,该层权重参数的形状是3 , 000 , 000 × 256 3,000,000\times 2563,000,000×256:它占用了大约3 GB的内存或显存。这带来过复杂的模型和过高的存储开销。

卷积层尝试解决这两个问题:

一方面,卷积层保留输入形状,使图像的像素在高和宽两个方向上的相关性均可能被有效识别;

另一方面,卷积层通过滑动窗口将同一卷积核与不同位置的输入重复计算,从而避免参数尺寸过大。

卷积神经网络就是含卷积层的网络。本文我们将介绍一个早期用来识别手写数字图像的卷积神经网络:LeNet 。

Lenet 是一系列网络的合称,包括 Lenet1 - Lenet5,由 Yann LeCun 等人在 1990 年《Handwritten Digit Recognition with a Back-Propagation Network》中提出,是卷积神经网络的 HelloWorld。LeNet展示了通过梯度下降训练卷积神经网络可以达到手写数字识别在当时最先进的结果。这个奠基性的工作第一次将卷积神经网络推上舞台,为世人所知。LeNet5的网络结构如下图所示。

1. LeNet模型介绍与实现

LeNet分为卷积层块全连接层块两个部分。下面我们分别介绍这两个模块。

卷积层块里的基本单位是卷积层后接最大池化层:卷积层用来识别图像里的空间模式,如线条和物体局部,之后的最大池化层则用来降低卷积层对位置的敏感性。卷积层块由两个这样的基本单位重复堆叠构成。在卷积层块中,每个卷积层都使用5 × 5 5\times 55×5的窗口,并在输出上使用sigmoid激活函数。第一个卷积层输出通道数为6,第二个卷积层输出通道数则增加到16。这是因为第二个卷积层比第一个卷积层的输入的高和宽要小,所以增加输出通道使两个卷积层的参数尺寸类似。卷积层块的两个最大池化层的窗口形状均为2 × 2 2\times 22×2,且步幅为2。由于池化窗口与步幅形状相同,池化窗口在输入上每次滑动所覆盖的区域互不重叠。

卷积层块的输出形状为(批量大小, 通道, 高, 宽)。当卷积层块的输出传入全连接层块时,全连接层块会将小批量中每个样本变平(flatten)。也就是说,全连接层的输入形状将变成二维,其中第一维是小批量中的样本,第二维是每个样本变平后的向量表示,且向量长度为通道、高和宽的乘积。全连接层块含3个全连接层。它们的输出个数分别是120、84和10,其中10为输出的类别个数。

下面我们通过Sequential类来实现LeNet模型。

import time
import torch
from torch import nn, optim
import sys
import d2lzh_pytorch as d2l
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class LeNet(nn.Module):
    def __init__(self):
        super(LeNet, self).__init__()
        # 卷积神经网络
        self.conv = nn.Sequential(
            nn.Conv2d(1, 6, 5), # in_channels, out_channels, kernel_size
            nn.Sigmoid(),
            nn.MaxPool2d(2, 2), # kernel_size, stride
            nn.Conv2d(6, 16, 5),
            nn.Sigmoid(),
            nn.MaxPool2d(2, 2)
        )
        # 分类器
        self.fc = nn.Sequential(
            nn.Linear(16*4*4, 120),
            nn.Sigmoid(),
            nn.Linear(120, 84),
            nn.Sigmoid(),
            nn.Linear(84, 10)
        )
    def forward(self, img):
        feature = self.conv(img)
        # 将feature展平,传入分类器fc
        output = self.fc(feature.view(img.shape[0], -1))   
        return output

接下来查看每个层的形状。

net = LeNet()
print(net)

输出:

LeNet(
  (conv): Sequential(
    (0): Conv2d(1, 6, kernel_size=(5, 5), stride=(1, 1))
    (1): Sigmoid()
    (2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (3): Conv2d(6, 16, kernel_size=(5, 5), stride=(1, 1))
    (4): Sigmoid()
    (5): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (fc): Sequential(
    (0): Linear(in_features=256, out_features=120, bias=True)
    (1): Sigmoid()
    (2): Linear(in_features=120, out_features=84, bias=True)
    (3): Sigmoid()
    (4): Linear(in_features=84, out_features=10, bias=True)
  )
)

可以看到,在卷积层块中输入的高和宽在逐层减小。卷积层由于使用高和宽均为5的卷积核,从而将高和宽分别减小4,而池化层则将高和宽减半,但通道数则从1增加到16。全连接层则逐层减少输出个数,直到变成图像的类别数10。

2. 输入为Fashion-MNIST时各层输出形状

如果输入为Fashion-MNIST数据集,那么各层的形状的变化过程如下:

self.conv = nn.Sequential(
      # 输入:1*28*28
            nn.Conv2d(1, 6, 5), # in_channels, out_channels, kernel_size
            # 输出:6 * 24 * 24    【24=28-5+1】
            nn.Sigmoid(),
        # 输出:6 * 24 * 24
            nn.MaxPool2d(2, 2), # kernel_size, stride
        # 输出:6 * 12 * 12    【12=(24-2+2)/2】
            nn.Conv2d(6, 16, 5),
        # 输出:16 * 8 * 8     【8=12-5+1】
            nn.Sigmoid(),
        # 输出:16 * 8 * 8
            nn.MaxPool2d(2, 2)
        # 输出:16 * 4 * 4     【4=(8-2+2)/2】
        )
        # 分类器
        self.fc = nn.Sequential(
            # 输入:16*4*4
            nn.Linear(16*4*4, 120),
            # 输出:120
            nn.Sigmoid(),
            nn.Linear(120, 84),
            # 输出:84
            nn.Sigmoid(),
            nn.Linear(84, 10)
            # 输出:10
        )

3. 获取Fashion-MNIST数据和并使用LeNet模型进行训练

下面我们运用LeNet模型对Fashion-MNIST数据集进行训练。

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size=batch_size)

因为卷积神经网络计算比多层感知机要复杂,建议使用GPU来加速计算。定义评价函数evaluate_accuracy,能同时支持GPU与CPU计算。

def evaluate_accuracy(data_iter, net, device=None):
    if device is None and isinstance(net, torch.nn.Module):
        # 如果没指定device就使用net的device
        device = list(net.parameters())[0].device
    acc_sum, n = 0.0, 0
    with torch.no_grad():
        for X, y in data_iter:
            if isinstance(net, torch.nn.Module):
                net.eval() # 评估模式, 这会关闭dropout
                acc_sum += (net(X.to(device)).argmax(dim=1) == y.to(device)).float().sum().cpu().item()
                net.train() # 改回训练模式
            else: 
                if('is_training' in net.__code__.co_varnames): # 如果有is_training这个参数
                    # 将is_training设置成False
                    acc_sum += (net(X, is_training=False).argmax(dim=1) == y).float().sum().item() 
                else:
                    acc_sum += (net(X).argmax(dim=1) == y).float().sum().item() 
            n += y.shape[0]
    return acc_sum / n

定义train_ch3训练函数,确保计算使用的数据和模型同在内存或显存上。

def train_ch5(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs):
    net = net.to(device)
    print("training on ", device)
    loss = torch.nn.CrossEntropyLoss()
    for epoch in range(num_epochs):
        train_l_sum, train_acc_sum, n, batch_count, start = 0.0, 0.0, 0, 0, time.time()
        for X, y in train_iter:
            X = X.to(device)
            y = y.to(device)
            y_hat = net(X)
            l = loss(y_hat, y)
            optimizer.zero_grad()
            l.backward()
            optimizer.step()
            train_l_sum += l.cpu().item()
            train_acc_sum += (y_hat.argmax(dim=1) == y).sum().cpu().item()
            n += y.shape[0]
            batch_count += 1
        test_acc = evaluate_accuracy(test_iter, net)
        print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f, time %.1f sec'
              % (epoch + 1, train_l_sum / batch_count, train_acc_sum / n, test_acc, time.time() - start))

学习率采用0.001,训练算法使用Adam算法,损失函数使用交叉熵损失函数。

lr, num_epochs = 0.001, 5
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
train_ch5(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs)

输出:

training on  cpu
epoch 1, loss 1.7832, train acc 0.341, test acc 0.595, time 15.3 sec
epoch 2, loss 0.9300, train acc 0.649, test acc 0.705, time 15.5 sec
epoch 3, loss 0.7574, train acc 0.722, test acc 0.731, time 15.6 sec
epoch 4, loss 0.6708, train acc 0.745, test acc 0.743, time 15.6 sec
epoch 5, loss 0.6165, train acc 0.762, test acc 0.764, time 15.8 sec

4.完整代码

import time
import torch
from torch import nn, optim
import sys
import d2lzh_pytorch as d2l
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 定义模型
class LeNet(nn.Module):
    def __init__(self):
        super(LeNet, self).__init__()
        # 卷积神经网络
        self.conv = nn.Sequential(
            nn.Conv2d(1, 6, 5), # in_channels, out_channels, kernel_size
            nn.Sigmoid(),
            nn.MaxPool2d(2, 2), # kernel_size, stride
            nn.Conv2d(6, 16, 5),
            nn.Sigmoid(),
            nn.MaxPool2d(2, 2)
        )
        # 分类器
        self.fc = nn.Sequential(
            nn.Linear(16*4*4, 120),
            nn.Sigmoid(),
            nn.Linear(120, 84),
            nn.Sigmoid(),
            nn.Linear(84, 10)
        )
    def forward(self, img):
        feature = self.conv(img)
        # 将feature展平,传入分类器fc
        output = self.fc(feature.view(img.shape[0], -1))   
        return output
# 定义评价函数
def evaluate_accuracy(data_iter, net, device=None):
    if device is None and isinstance(net, torch.nn.Module):
        # 如果没指定device就使用net的device
        device = list(net.parameters())[0].device
    acc_sum, n = 0.0, 0
    with torch.no_grad():
        for X, y in data_iter:
            if isinstance(net, torch.nn.Module):
                net.eval() # 评估模式, 这会关闭dropout
                acc_sum += (net(X.to(device)).argmax(dim=1) == y.to(device)).float().sum().cpu().item()
                net.train() # 改回训练模式
            else: 
                if('is_training' in net.__code__.co_varnames): # 如果有is_training这个参数
                    # 将is_training设置成False
                    acc_sum += (net(X, is_training=False).argmax(dim=1) == y).float().sum().item() 
                else:
                    acc_sum += (net(X).argmax(dim=1) == y).float().sum().item() 
            n += y.shape[0]
    return acc_sum / n
# 定义训练函数
def train_ch5(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs):
    net = net.to(device)
    print("training on ", device)
    loss = torch.nn.CrossEntropyLoss()
    for epoch in range(num_epochs):
        train_l_sum, train_acc_sum, n, batch_count, start = 0.0, 0.0, 0, 0, time.time()
        for X, y in train_iter:
            X = X.to(device)
            y = y.to(device)
            y_hat = net(X)
            l = loss(y_hat, y)
            optimizer.zero_grad()
            l.backward()
            optimizer.step()
            train_l_sum += l.cpu().item()
            train_acc_sum += (y_hat.argmax(dim=1) == y).sum().cpu().item()
            n += y.shape[0]
            batch_count += 1
        test_acc = evaluate_accuracy(test_iter, net)
        print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f, time %.1f sec'
              % (epoch + 1, train_l_sum / batch_count, train_acc_sum / n, test_acc, time.time() - start))
# 使用模型进行训练
net = LeNet()
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size=batch_size)
lr, num_epochs = 0.001, 5
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
train_ch5(net, train_iter, test_iter, batch_size, optimizer, device, num_epochs)


相关实践学习
【文生图】一键部署Stable Diffusion基于函数计算
本实验教你如何在函数计算FC上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。函数计算提供一定的免费额度供用户使用。本实验答疑钉钉群:29290019867
建立 Serverless 思维
本课程包括: Serverless 应用引擎的概念, 为开发者带来的实际价值, 以及让您了解常见的 Serverless 架构模式
相关文章
|
4天前
|
机器学习/深度学习 PyTorch 调度
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
在深度学习中,学习率作为关键超参数对模型收敛速度和性能至关重要。传统方法采用统一学习率,但研究表明为不同层设置差异化学习率能显著提升性能。本文探讨了这一策略的理论基础及PyTorch实现方法,包括模型定义、参数分组、优化器配置及训练流程。通过示例展示了如何为ResNet18设置不同层的学习率,并介绍了渐进式解冻和层适应学习率等高级技巧,帮助研究者更好地优化模型训练。
14 4
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
|
1天前
|
机器学习/深度学习 人工智能 算法
深入理解卷积神经网络:从理论到实践
【9月更文挑战第31天】在深度学习的众多模型之中,卷积神经网络(CNN)以其在图像处理领域的出色表现而闻名。本文将通过浅显易懂的语言和直观的比喻,带领读者了解CNN的核心原理和结构,并通过一个简化的代码示例,展示如何实现一个简单的CNN模型。我们将从CNN的基本组成出发,逐步深入到其在现实世界中的应用,最后探讨其未来的可能性。文章旨在为初学者提供一个清晰的CNN入门指南,同时为有经验的开发者提供一些深入思考的视角。
|
5天前
|
机器学习/深度学习 数据采集 网络安全
使用Python实现深度学习模型:智能网络安全威胁检测
使用Python实现深度学习模型:智能网络安全威胁检测
22 5
|
2天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)入门与实践
【8月更文挑战第62天】本文以浅显易懂的方式介绍了深度学习领域中的核心技术之一——卷积神经网络(CNN)。文章通过生动的比喻和直观的图示,逐步揭示了CNN的工作原理和应用场景。同时,结合具体的代码示例,引导读者从零开始构建一个简单的CNN模型,实现对图像数据的分类任务。无论你是深度学习的初学者还是希望巩固理解的开发者,这篇文章都将为你打开一扇通往深度学习世界的大门。
|
4天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
使用Python实现深度学习模型:智能数据隐私保护
使用Python实现深度学习模型:智能数据隐私保护
14 1
|
6天前
|
机器学习/深度学习 存储 自然语言处理
深度学习中的模型压缩技术
在现代深度学习应用中,模型的复杂性和体积不断增加,给存储和计算带来了巨大的挑战。为了解决这些问题,模型压缩技术应运而生,并成为研究热点。本文将介绍什么是模型压缩技术,探讨其常见方法及应用实例,分析其在实际应用中的效果和前景。
14 1
|
4天前
|
机器学习/深度学习 数据采集 自然语言处理
深度学习在自然语言处理中的应用与挑战
本文探讨了深度学习技术在自然语言处理(NLP)领域的应用,包括机器翻译、情感分析和文本生成等方面。同时,讨论了数据质量、模型复杂性和伦理问题等挑战,并提出了未来的研究方向和解决方案。通过综合分析,本文旨在为NLP领域的研究人员和从业者提供有价值的参考。
|
5天前
|
机器学习/深度学习 存储 人工智能
深度学习在图像识别中的应用与挑战
【9月更文挑战第27天】本文将深入探讨深度学习技术如何革新了图像识别领域,并分析当前面临的主要挑战。通过简明扼要的介绍,我们将揭示深度学习模型如何超越传统方法,以及它们在实际应用中的限制和未来发展方向。
|
2天前
|
机器学习/深度学习 算法框架/工具 计算机视觉
深度学习在图像识别中的应用
【9月更文挑战第30天】本文将深入探讨深度学习技术在图像识别领域的应用。我们将首先介绍深度学习的基本原理,然后通过一个实际的代码示例,展示如何使用深度学习进行图像识别。最后,我们将讨论深度学习在图像识别中的优势和挑战。
|
5天前
|
机器学习/深度学习 算法框架/工具 计算机视觉
深度学习在图像识别中的应用
【9月更文挑战第27天】本文将探讨深度学习技术如何改变图像识别领域。我们将通过实际案例和代码示例,展示深度学习模型如何从原始像素中学习和提取特征,以及如何使用这些特征进行准确的图像分类。
24 10
下一篇
无影云桌面