【从零开始学习深度学习】16. Pytorch中神经网络模型的构造方法:Module、Sequential、ModuleList、ModuleDict的区别

简介: 【从零开始学习深度学习】16. Pytorch中神经网络模型的构造方法:Module、Sequential、ModuleList、ModuleDict的区别

在Pytorch中可以通过Sequential类构造模型也可以用Module类构造模型。本文主要介绍基于Module类的模型构造方法:它让模型构造更加灵活方便。

1 继承Module类来构造模型

Module类是nn模块里提供的一个模型构造类,是所有神经网络模块的基类,我们可以继承它来定义我们想要的模型。下面继承Module类构造一个多层感知机,输入784,输出10。这里定义的MLP类重载了Module类的__init__函数和forward函数。它们分别用于创建模型参数和定义前向计算。前向计算也即正向传播。

import torch
from torch import nn
class MLP(nn.Module):
    # 声明带有模型参数的层,这里声明了两个全连接层
    def __init__(self, **kwargs):
        # 调用MLP父类Module的构造函数来进行必要的初始化。这样在构造实例时还可以指定其他函数
        # 参数,如“模型参数的访问、初始化和共享”一节将介绍的模型参数params
        super(MLP, self).__init__(**kwargs)
        self.hidden = nn.Linear(784, 256) # 隐藏层
        self.act = nn.ReLU()
        self.output = nn.Linear(256, 10)  # 输出层
         
    # 定义模型的前向计算,即如何根据输入x计算返回所需要的模型输出
    def forward(self, x):
        a = self.act(self.hidden(x))
        return self.output(a)

以上的MLP类中无须定义反向传播函数。系统将通过自动求梯度而自动生成反向传播所需的backward函数。

我们可以实例化MLP类得到模型变量net。下面的代码初始化net并传入输入数据X做一次前向计算。其中,net(X)会调用MLP继承自Module类的__call__函数,这个函数将调用MLP类定义的forward函数来完成前向计算。

X = torch.rand(2, 784)
net = MLP()
print(net)
net(X)

输出:

MLP(
  (hidden): Linear(in_features=784, out_features=256, bias=True)
  (act): ReLU()
  (output): Linear(in_features=256, out_features=10, bias=True)
)
tensor([[-0.1798, -0.2253,  0.0206, -0.1067, -0.0889,  0.1818, -0.1474,  0.1845,
         -0.1870,  0.1970],
        [-0.1843, -0.1562, -0.0090,  0.0351, -0.1538,  0.0992, -0.0883,  0.0911,
         -0.2293,  0.2360]], grad_fn=<ThAddmmBackward>)

注意,这里并没有将Module类命名为Layer(层)或者Model(模型)之类的名字,这是因为该类是一个可供自由组建的部件。它的子类既可以是一个层(如PyTorch提供的Linear类),又可以是一个模型(如这里定义的MLP类),或者是模型的一个部分。我们下面通过两个例子来展示它的灵活性。

2 Module的子类

我们刚刚提到,Module类是一个通用的部件。事实上,PyTorch还实现了继承自Module的可以方便构建模型的类: 如SequentialModuleListModuleDict等等。

2.1 Sequential

当模型的前向计算为简单串联各个层的计算时,Sequential类可以通过更加简单的方式定义模型。这正是Sequential类的目的:它可以接收一个子模块的有序字典(OrderedDict)或者一系列子模块作为参数来逐一添加Module的实例,而模型的前向计算就是将这些实例按添加的顺序逐一计算。

下面我们实现一个与Sequential类有相同功能的MySequential类。这或许可以帮助读者更加清晰地理解Sequential类的工作机制。

class MySequential(nn.Module):
    from collections import OrderedDict
    def __init__(self, *args):
        super(MySequential, self).__init__()
        if len(args) == 1 and isinstance(args[0], OrderedDict): # 如果传入的是一个OrderedDict
            for key, module in args[0].items():
                self.add_module(key, module)  # add_module方法会将module添加进self._modules(一个OrderedDict)
        else:  # 传入的是一些Module
            for idx, module in enumerate(args):
                self.add_module(str(idx), module)
    def forward(self, input):
        # self._modules返回一个 OrderedDict,保证会按照成员添加时的顺序遍历成员
        for module in self._modules.values():
            input = module(input)
        return input

我们用MySequential类来实现前面描述的MLP类,并使用随机初始化的模型做一次前向计算。

net = MySequential(
        nn.Linear(784, 256),
        nn.ReLU(),
        nn.Linear(256, 10), 
        )
print(net)
net(X)

输出:

MySequential(
  (0): Linear(in_features=784, out_features=256, bias=True)
  (1): ReLU()
  (2): Linear(in_features=256, out_features=10, bias=True)
)
tensor([[-0.0100, -0.2516,  0.0392, -0.1684, -0.0937,  0.2191, -0.1448,  0.0930,
          0.1228, -0.2540],
        [-0.1086, -0.1858,  0.0203, -0.2051, -0.1404,  0.2738, -0.0607,  0.0622,
          0.0817, -0.2574]], grad_fn=<ThAddmmBackward>)

2.2 ModuleList

ModuleList接收一个子模块的列表作为输入,然后也可以类似List那样进行append和extend操作:

net = nn.ModuleList([nn.Linear(784, 256), nn.ReLU()])
net.append(nn.Linear(256, 10)) # # 类似List的append操作
print(net[-1])  # 类似List的索引访问
print(net)
# net(torch.zeros(1, 784)) # 会报NotImplementedError

输出:

Linear(in_features=256, out_features=10, bias=True)
ModuleList(
  (0): Linear(in_features=784, out_features=256, bias=True)
  (1): ReLU()
  (2): Linear(in_features=256, out_features=10, bias=True)
)

既然SequentialModuleList都可以进行列表化构造网络,那二者区别是什么呢。ModuleList仅仅是一个储存各种模块的列表,这些模块之间没有联系也没有顺序(所以不用保证相邻层的输入输出维度匹配),而且没有实现forward功能需要自己实现,所以上面执行net(torch.zeros(1, 784))会报NotImplementedError;而Sequential内的模块需要按照顺序排列,要保证相邻层的输入输出大小相匹配,内部forward功能已经实现。

ModuleList的出现只是让网络定义前向传播时更加灵活,见下面官网的例子。

class MyModule(nn.Module):
    def __init__(self):
        super(MyModule, self).__init__()
        self.linears = nn.ModuleList([nn.Linear(10, 10) for i in range(10)])
    def forward(self, x):
        # ModuleList can act as an iterable, or be indexed using ints
        for i, l in enumerate(self.linears):
            x = self.linears[i // 2](x) + l(x)
        return x

另外,ModuleList不同于一般的Python的list,加入到ModuleList里面的所有模块的参数会被自动添加到整个网络中,下面看一个例子对比一下。

class Module_ModuleList(nn.Module):
    def __init__(self):
        super(Module_ModuleList, self).__init__()
        self.linears = nn.ModuleList([nn.Linear(10, 10)])
    
class Module_List(nn.Module):
    def __init__(self):
        super(Module_List, self).__init__()
        self.linears = [nn.Linear(10, 10)]
net1 = Module_ModuleList()
net2 = Module_List()
print("net1:")
for p in net1.parameters():
    print(p.size())
print("net2:")
for p in net2.parameters():
    print(p)

输出:

net1:
torch.Size([10, 10])
torch.Size([10])
net2:

2.3 ModuleDict

ModuleDict接收一个子模块的字典作为输入, 然后也可以类似字典那样进行添加访问操作:

net = nn.ModuleDict({
    'linear': nn.Linear(784, 256),
    'act': nn.ReLU(),
})
net['output'] = nn.Linear(256, 10) # 添加
print(net['linear']) # 访问
print(net.output)
print(net)
# net(torch.zeros(1, 784)) # 会报NotImplementedError

输出:

Linear(in_features=784, out_features=256, bias=True)
Linear(in_features=256, out_features=10, bias=True)
ModuleDict(
  (act): ReLU()
  (linear): Linear(in_features=784, out_features=256, bias=True)
  (output): Linear(in_features=256, out_features=10, bias=True)
)

ModuleList一样,ModuleDict实例仅仅是存放了一些模块的字典,并没有定义forward函数需要自己定义。同样,ModuleDict也与Python的Dict有所不同,ModuleDict里的所有模块的参数会被自动添加到整个网络中。

3 构造复杂的模型

虽然上面介绍的这些类可以使模型构造更加简单,且不需要定义forward函数,但直接继承Module类可以极大地拓展模型构造的灵活性。下面我们构造一个稍微复杂点的网络FancyMLP。在这个网络中,我们通过get_constant函数创建训练中不被迭代的参数,即常数参数。在前向计算中,除了使用创建的常数参数外,我们还使用Tensor的函数和Python的控制流,并多次调用相同的层。

class FancyMLP(nn.Module):
    def __init__(self, **kwargs):
        super(FancyMLP, self).__init__(**kwargs)
        
        self.rand_weight = torch.rand((20, 20), requires_grad=False) # 不可训练参数(常数参数)
        self.linear = nn.Linear(20, 20)
    def forward(self, x):
        x = self.linear(x)
        # 使用创建的常数参数,以及nn.functional中的relu函数和mm函数
        x = nn.functional.relu(torch.mm(x, self.rand_weight.data) + 1)
        
        # 复用全连接层。等价于两个全连接层共享参数
        x = self.linear(x)
        # 控制流,这里我们需要调用item函数来返回标量进行比较
        while x.norm().item() > 1:
            x /= 2
        if x.norm().item() < 0.8:
            x *= 10
        return x.sum()

在这个FancyMLP模型中,我们使用了常数权重rand_weight(注意它不是可训练模型参数)、做了矩阵乘法操作(torch.mm)并重复使用了相同的Linear层。下面我们来测试该模型的前向计算。

X = torch.rand(2, 20)
net = FancyMLP()
print(net)
net(X)

输出:

FancyMLP(
  (linear): Linear(in_features=20, out_features=20, bias=True)
)
tensor(0.8432, grad_fn=<SumBackward0>)

因为FancyMLPSequential类都是Module类的子类,所以我们可以嵌套调用它们。

class NestMLP(nn.Module):
    def __init__(self, **kwargs):
        super(NestMLP, self).__init__(**kwargs)
        self.net = nn.Sequential(nn.Linear(40, 30), nn.ReLU()) 
    def forward(self, x):
        return self.net(x)
net = nn.Sequential(NestMLP(), nn.Linear(30, 20), FancyMLP())
X = torch.rand(2, 40)
print(net)
net(X)

输出:

Sequential(
  (0): NestMLP(
    (net): Sequential(
      (0): Linear(in_features=40, out_features=30, bias=True)
      (1): ReLU()
    )
  )
  (1): Linear(in_features=30, out_features=20, bias=True)
  (2): FancyMLP(
    (linear): Linear(in_features=20, out_features=20, bias=True)
  )
)
tensor(14.4908, grad_fn=<SumBackward0>)

总结

  • 可以通过继承Module类来构造模型。
  • SequentialModuleListModuleDict类都继承自Module类。
  • Sequential不同,ModuleListModuleDict并没有定义一个完整的网络,它们只是将不同的模块存放在一起,需要自己定义forward函数。
  • 虽然Sequential等类可以使模型构造更加简单,但直接继承Module类可以极大地拓展模型构造的灵活性。
相关文章
|
2天前
|
前端开发 搜索推荐 Java
网络基础重定向和转发的区别
本文介绍了网络基础中重定向和转发的区别。重定向是服务器告知客户端访问新URL,涉及两次请求,URL变化;转发是服务器内部处理,客户端无感知,URL不变。文中详细对比了两者的请求次数、数据传递及应用场景,并通过实例演示帮助理解。
|
24天前
|
网络协议 安全 网络安全
探索网络模型与协议:从OSI到HTTPs的原理解析
OSI七层网络模型和TCP/IP四层模型是理解和设计计算机网络的框架。OSI模型包括物理层、数据链路层、网络层、传输层、会话层、表示层和应用层,而TCP/IP模型则简化为链路层、网络层、传输层和 HTTPS协议基于HTTP并通过TLS/SSL加密数据,确保安全传输。其连接过程涉及TCP三次握手、SSL证书验证、对称密钥交换等步骤,以保障通信的安全性和完整性。数字信封技术使用非对称加密和数字证书确保数据的机密性和身份认证。 浏览器通过Https访问网站的过程包括输入网址、DNS解析、建立TCP连接、发送HTTPS请求、接收响应、验证证书和解析网页内容等步骤,确保用户与服务器之间的安全通信。
88 1
|
28天前
|
监控 安全 BI
什么是零信任模型?如何实施以保证网络安全?
随着数字化转型,网络边界不断变化,组织需采用新的安全方法。零信任基于“永不信任,永远验证”原则,强调无论内外部,任何用户、设备或网络都不可信任。该模型包括微分段、多因素身份验证、单点登录、最小特权原则、持续监控和审核用户活动、监控设备等核心准则,以实现强大的网络安全态势。
123 2
|
2月前
|
存储 网络协议 安全
30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场
本文精选了 30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场。
126 2
|
2月前
|
运维 网络协议 算法
7 层 OSI 参考模型:详解网络通信的层次结构
7 层 OSI 参考模型:详解网络通信的层次结构
425 1
|
3月前
|
算法 PyTorch 算法框架/工具
Pytorch学习笔记(九):Pytorch模型的FLOPs、模型参数量等信息输出(torchstat、thop、ptflops、torchsummary)
本文介绍了如何使用torchstat、thop、ptflops和torchsummary等工具来计算Pytorch模型的FLOPs、模型参数量等信息。
496 2
|
1月前
|
机器学习/深度学习 人工智能 PyTorch
Transformer模型变长序列优化:解析PyTorch上的FlashAttention2与xFormers
本文探讨了Transformer模型中变长输入序列的优化策略,旨在解决深度学习中常见的计算效率问题。文章首先介绍了批处理变长输入的技术挑战,特别是填充方法导致的资源浪费。随后,提出了多种优化技术,包括动态填充、PyTorch NestedTensors、FlashAttention2和XFormers的memory_efficient_attention。这些技术通过减少冗余计算、优化内存管理和改进计算模式,显著提升了模型的性能。实验结果显示,使用FlashAttention2和无填充策略的组合可以将步骤时间减少至323毫秒,相比未优化版本提升了约2.5倍。
69 3
Transformer模型变长序列优化:解析PyTorch上的FlashAttention2与xFormers
|
3月前
|
机器学习/深度学习 自然语言处理 监控
利用 PyTorch Lightning 搭建一个文本分类模型
利用 PyTorch Lightning 搭建一个文本分类模型
101 7
利用 PyTorch Lightning 搭建一个文本分类模型
|
3月前
|
机器学习/深度学习 自然语言处理 数据建模
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
本文深入探讨了Transformer模型中的三种关键注意力机制:自注意力、交叉注意力和因果自注意力,这些机制是GPT-4、Llama等大型语言模型的核心。文章不仅讲解了理论概念,还通过Python和PyTorch从零开始实现这些机制,帮助读者深入理解其内部工作原理。自注意力机制通过整合上下文信息增强了输入嵌入,多头注意力则通过多个并行的注意力头捕捉不同类型的依赖关系。交叉注意力则允许模型在两个不同输入序列间传递信息,适用于机器翻译和图像描述等任务。因果自注意力确保模型在生成文本时仅考虑先前的上下文,适用于解码器风格的模型。通过本文的详细解析和代码实现,读者可以全面掌握这些机制的应用潜力。
201 3
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
|
4月前
|
机器学习/深度学习 PyTorch 调度
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型
在深度学习中,学习率作为关键超参数对模型收敛速度和性能至关重要。传统方法采用统一学习率,但研究表明为不同层设置差异化学习率能显著提升性能。本文探讨了这一策略的理论基础及PyTorch实现方法,包括模型定义、参数分组、优化器配置及训练流程。通过示例展示了如何为ResNet18设置不同层的学习率,并介绍了渐进式解冻和层适应学习率等高级技巧,帮助研究者更好地优化模型训练。
289 4
在Pytorch中为不同层设置不同学习率来提升性能,优化深度学习模型

热门文章

最新文章