1.概述
1.1.前言
本文式作者大数据系列专栏中的一篇文章,按照专栏来阅读,循序渐进能更好的理解
当前的分布式数据库其实都是参考的Google的BigTable,所以学习分布式数据库之前先学一下BigTable会一通百通。
分布式数据库底层依托于分部署文件系统进行存储,分布式数据库更像在分布式文件系统上做了一层封装。就像BigTable底层依托于GFS一样,HBase底层依托于HDFS
1.2.数据模型
HBase中一个具体的数据由行键、列族、列限定符、时间戳组成。数据类型是不定的,统一存储为Bytes数组。
之所以有时间戳是因为HBASE底层是用的HDFS来做存储的,HDFS只支持追加写,所以HBASE为了实现删除效果只能用时间戳来区分哪个数据是最新的。
列族是个很核心的概念,底层的物理存储以列族为单位进行存储,支持动态扩展,一个列族其实就是HDFS中的一个文件,同一列族下的数据一定是被存到HDFS中的一个文件中的。
1.3.列式存储的优势
大数据技术中为什么采用列式存储:
HDBASE采用的这种存储模式叫列式存储,传统的关系型数据库采用的行式存储,大数据中普遍都采用列式存储。大数据中之所以采用列式存储是因为列式存储往往更有利于分析,当需要做指标统计的时候往往只需要访问一个列即可,而且列族在物理磁盘上是连续存储的,速度会很快。行式存储要进行指标统计的时候要访问很多无用的列,而且数据在物理磁盘上也不是连续存储的,性能不会很好。
比如数据表是这样:
行式和列式的区别会是:
2.实现原理
2.1.region
HBase最核心的概念!!!
hbase的架构直接参照bigtable即可,只是改了个名字。bigtable的核心是tablet,HBase的核心是region,存储region的服务器叫region server,对应bigtable中的tablet server。一个表会按照行键的字典序列进行排布,然后被分成多个region:
如何找到要的region?
HBASE参照BigTable的三层结构也维护了一个类树状结构用来快速查找到要的region:
叶子节点是region、meta表负责维护树形的层级结构,一个meta对应多个region,root只有一个,对应多个meta。
层次 | 名称 | 作用 |
第一层 | root表 | 记录了META表的位置信息 |
第二层 | meta表 | 记录了region表的位置信息,meta表相当于一个集合,将region分块的管理,用来维护了层级结构 |
第三层 | 用户表 | 用来记录用户数据 |
2.2.LSM树
LSM树是一种专门针对海量数据读写而升的数据结构,前文中作者聊bigtable的时候单独写了一篇文章对LSM树进行过讲解,可移步:
【大数据】LSM树,专为海量数据读写而生的数据结构-CSDN博客
同样HBASE中也用了LSM树,也有类似于memtable和sstable的东西:
memstore->memtable
storefile->sstable
这里HBase和bigtable唯一有区别的就是bigtable的一个tablet里只会有一条线的memtable和sstable,而HBase由于支持多个列族所以会有多条线的memtable和sstable。
2.3.完整读写过程
写过程:
客户端发起写请求 客户端应用通过HBase客户端API(如Java API)向HBase提交一个PUT请求,包含待写入的数据(包括RowKey、列族、列限定符、值以及可选的时间戳等)。
定位目标Region 访问ZooKeeper:客户端首先访问ZooKeeper集群,先查询hbase:root表以获取hbase:meta表所在的Region Server位置。 缓存元数据:客户端将获取到的元数据信息(如hbase:meta表或目标Region的位置)缓存在本地Client Cache中,以减少后续操作对ZooKeeper的依赖和网络开销。
查找目标Region 查询元数据表:客户端使用缓存的信息连接到hbase:meta表所在的Region Server,根据待写入数据的RowKey在hbase:meta表中查找目标Region的位置。这个过程可能涉及Region的三层定位(Namespace、表名、RowKey区间),确保找到正确的Region负责处理该RowKey的数据。 更新缓存:客户端将查询到的目标Region的位置信息(包括Region Server地址和Region边界)更新到本地缓存中。
与目标Region Server交互 发送写请求:客户端根据缓存中的信息,向目标Region Server发送实际的PUT请求。
Region Server内部处理 追加写入HLog(WAL,Write Ahead og):Region Server接收到PUT请求后,首先将写操作作为一条日志记录追加到HLog。HLog是一种预写式日志,用于保证在发生故障时能够恢复未持久化到磁盘的数据。 随机写入MemStore:接着,Region Server将数据随机写入对应Region的MemStore。MemStore是内存中的数据结构,用于临时存储待写入HFile(HBase的数据文件)的修改。
更新BlockCache 读写加速:写入完成后,新写入的数据会被添加到Region Server的BlockCache中。BlockCache是一种基于LRU(最近最少使用)策略的缓存,用于加速后续对相同数据块的读取。
读过程:
定位目标Region 访问ZooKeeper:客户端首先访问ZooKeeper集群,查询HBase的元数据表(hbase:meta)的位置信息。这里同样可能存在旧版流程(先查询hbase:root表)和新版流程(直接查询hbase:meta表)的区别。 缓存元数据:客户端将获取到的元数据信息(如hbase:meta表或目标Region的位置)缓存在本地Client Cache中,以减少后续操作对ZooKeeper的依赖和网络开销。
查找目标Region 查询元数据表:客户端使用缓存的信息连接到hbase:meta表所在的Region Server,根据待读取数据的RowKey在hbase:meta表中查找目标Region的位置。这一步确保客户端知道应该向哪个Region Server的哪个Region发送读请求。 更新缓存:客户端将查询到的目标Region的位置信息更新到本地缓存中。
与目标Region Server交互 发送读请求:客户端根据缓存中的信息,向目标Region Server发送实际的GET请求。
Region Server内部处理 查询BlockCache:Region Server首先在本地BlockCache中查找是否有请求的数据。BlockCache是一种基于LRU(最近最少使用)策略的缓存,存储最近访问过的HFile数据块。如果数据在BlockCache中命中,则直接返回给客户端,避免了磁盘I/O。 查询MemStore:如果BlockCache中未找到数据,Region Server接着在对应Region的MemStore中查找。MemStore存储了尚未刷写到HFile的最新数据,如果请求的数据在这里存在且是最新的版本,则直接返回给客户端。 查询HFile:如果BlockCache和MemStore均未命中,Region Server将从磁盘上的HFile中读取数据。HFile是按RowKey排序的持久化存储文件,通过二分查找等高效算法快速定位数据。读取到的数据将返回给客户端,并可能被加入到BlockCache中以供后续读取加速。 合并版本与过滤:对于同一RowKey的多个版本(依据时间戳区分),Region Server按照请求的时间戳范围或其他过滤条件(如列族、列限定符等)筛选并合并结果集,只返回满足条件的数据版本。
客户端接收响应 处理响应:客户端接收到Region Server返回的数据后,解析并呈现给应用程序。如果请求涉及多个列族或多行数据,客户端可能需要合并来自不同Region Server的响应。
数据flush与compaction:
MemStore flush:当MemStore达到一定大小阈值时,Region Server将其内容刷写到硬盘上的HFile中,并清空MemStore。同时,对应的HLog记录可以被安全地截断(truncated),因为其数据已持久化。 Compaction:随着时间推移,针对同一Region可能会产生多个HFile。HBase后台会定期执行Compaction操作,合并小文件、删除过期版本的数据,并可能进行压缩,以优化读性能和存储空间利用率。
合并没有什么好说的,和bigtable一样,值得注意的是一直合并下去,单体过大后又会分成小块来存储,这个分块存储的过程就会造成一个大region1分成一个个小region。
2.4.master的作用
master主要就是负责整个集群的管理:
- 通过master来对表进行增删改查
- 负责region的分布
- 负责不同region服务器的负载均衡,将负载较重的region服务器上的region重新分布到其它负载轻的region服务器上去。
- region服务器故障失效后,借助master来将上面的region重新分配给其它服务器。