惊艳!老司机熬夜总结的Python高性能编程,高效、稳定、快速!

简介: Python 语言是一种脚本语言,其应用领域非常广泛,包括数据分析、自然语言处理机器学习、科学计算、推荐系统构建等。能够轻松实现和代码跑得够快之间的取舍却是一个世人皆知且令人惋惜的现象而这个问题其实是可以解决的。有些人想要让顺序执行的过程跑得更快。有些人需要利用多核架构、集群,或者图形处理单元的优势来解决他们的问题。有些人需要可伸缩系统在保证可靠性的前提下酌情或根据资金多少处理更多或更少的工作。有些人意识到他们的编程技巧,通常是来自其他语言,可能不如别人的自然。

Python 语言是一种脚本语言,其应用领域非常广泛,包括数据分析、自然语言处理机器学习、科学计算、推荐系统构建等。

能够轻松实现和代码跑得够快之间的取舍却是一个世人皆知且令人惋惜的现象而这个问题其实是可以解决的。

有些人想要让顺序执行的过程跑得更快。有些人需要利用多核架构、集群,或者图形处理单元的优势来解决他们的问题。有些人需要可伸缩系统在保证可靠性的前提下酌情或根据资金多少处理更多或更少的工作。有些人意识到他们的编程技巧,通常是来自其他语言,可能不如别人的自然。

今天给小伙伴们分享一份Python高性能编程手册,这份手册涵盖了上面提到的所有主题,并给出指导去了解瓶颈并提出效率更高、伸缩性更好的解决方案。

限于文章篇幅原因,只能以截图的形式展示出来,有需要的小伙伴可以  点击这里获取!

第1章 理解高性能Python

  • 计算机架构有哪些元素?
  • 常见的计算机架构有哪些?
  • 计算机架构在 Python 中的抽象表达是什么?
  • 实现高性能 Python 代码的障碍在哪里?
  • 性能问题有哪些种类?

第2章 通过性能分析找到瓶颈

  • 如何找到代码中速度和 RAM 的瓶颈?
  • 如何分析 CPU 和内存使用情况?
  • 我应该分析到什么深度?
  • 如何分析一个长期运行的应用程序?
  • 在 CPython 台面下发生了什么?
  • 如何在调整性能的同时确保功能的正确?

第3章 列表和元组

  • 列表和元组各自适用于什么情况?
  • 查询列表/元组的复杂度是什么?
  • 该复杂度是如何计算出来的?
  • 列表和元组的区别是什么?
  • 向列表添加新项目是如何实现的?
  • 我应该在什么情况下使用列表和元组?

第4章 字典和集合

  • 字典和集合各自适用于什么情况?
  • 字典和集合的共同点是什么?
  • 字典的开销在哪里?
  • 我如何优化字典的性能?
  • Python 如何使用字典记录命名空间?

第5章 迭代器和生成器

  • 生成器是怎样节约内存的?
  • 使用生成器的最佳时机是什么?
  • 我如何使用 itertools 来创建复杂的生成器工作流?
  • 延迟估值何时有益,何时无益?

第6章 矩阵和矢量计算

  • 矢量计算的瓶颈在哪里?
  • 我可以用什么工具查看 CPU 进行计算时的效率?
  • numpy为什么比纯 Python 更适合数值计算?
  • cache-miss和page-faults是什么?
  • 我如何追踪代码中的内存分配?

第7章 编译成C

  • 我怎么让我的 Python 代码作为低级代码来运行?
  • JIT 编译器和 AOT 编译器的区别是什么?
  • 编译后的 Python 代码运行什么任务能够比本地 Python 快?
  • 为什么类型注解提升了编译后 Python 代码的运行速度?
  • 我该怎样使用 C 或 Fortran 为 Python 编写模块?
  • 我该怎样在 Python 中使用 C 或者 Fortran 的库?

第8章 并发

  • 什么是并发,它如何起帮助作用?
  • 并发和并行的区别是什么?
  • 什么任务能够用并发来做,什么不能做?
  • 并发的各种模式是什么?
  • 什么时候是利用并发的合适时机?
  • 并发如何来加速我们的程序?

第9章 multiprocessing 模块

  • multiprocessing 模块提供了什么?
  • 进程和线程的区别是什么?
  • 我该如何选择合适大小的进程池?
  • 我该如何使用非持久队列来处理工作?
  • 进程间通信的代价和好处是什么?
  • 我该如何用多 CPU 来处理 numpy 数据?
  • 为什么我需要加锁来避免数据丢失?

第10章 集群和工作队列

  • 为什么集群是有用的?
  • 集群的代价是什么?
  • 我该如何把一个多进程的解决方案转换成一个集群解决方案?
  • IPython 集群如何工作?
  • NSQ 是怎样有助于创建鲁棒的生产系统?

第11章 使用更少的RAM

  • 为什么我应该使用更少的 RAM?
  • 为什么 numpy 和 array 对存储大量数字而言更有利?
  • 怎样把许多文本高效地存储进 RAM?
  • 我该如何能仅仅使用一个字节来(近似地)计数到 1e77?
  • 什么是布隆过滤,为什么我可能会需要它们?

第12章 现场教训

  • 成功的创业公司如何处理大量的数据和机器学习?
  • 什么样的监控和部署技术让系统保持稳定?
  • 成功的 CTO 学到了关于技术和团队的什么教训?
  • PyPy 怎样被广泛部署?


限于文章篇幅原因,就展示到这里了,有需要的小伙伴可以  点击这里获取!

相关文章
|
1月前
|
人工智能 数据可视化 数据挖掘
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!
|
30天前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
18天前
|
Unix Linux 程序员
[oeasy]python053_学编程为什么从hello_world_开始
视频介绍了“Hello World”程序的由来及其在编程中的重要性。从贝尔实验室诞生的Unix系统和C语言说起,讲述了“Hello World”作为经典示例的起源和流传过程。文章还探讨了C语言对其他编程语言的影响,以及它在系统编程中的地位。最后总结了“Hello World”、print、小括号和双引号等编程概念的来源。
102 80
|
2月前
|
存储 索引 Python
Python编程数据结构的深入理解
深入理解 Python 中的数据结构是提高编程能力的重要途径。通过合理选择和使用数据结构,可以提高程序的效率和质量
151 59
|
7天前
|
Python
[oeasy]python055_python编程_容易出现的问题_函数名的重新赋值_print_int
本文介绍了Python编程中容易出现的问题,特别是函数名、类名和模块名的重新赋值。通过具体示例展示了将内建函数(如`print`、`int`、`max`)或模块名(如`os`)重新赋值为其他类型后,会导致原有功能失效。例如,将`print`赋值为整数后,无法再用其输出内容;将`int`赋值为整数后,无法再进行类型转换。重新赋值后,这些名称失去了原有的功能,可能导致程序错误。总结指出,已有的函数名、类名和模块名不适合覆盖赋新值,否则会失去原有功能。如果需要使用类似的变量名,建议采用其他命名方式以避免冲突。
29 14
|
7天前
|
机器学习/深度学习 Rust 算法
Python环境管理的新选择:UV和Pixi,高性能Python环境管理方案
近期Python生态系统在包管理领域发生了重要变化,Anaconda调整商业许可证政策,促使社区寻找更开放的解决方案。本文介绍两款新一代Python包管理工具:UV和Pixi。UV用Rust编写,提供高性能依赖解析和项目级环境管理;Pixi基于Conda生态系统,支持conda-forge和PyPI包管理。两者分别适用于高性能需求和深度学习项目,为开发者提供了更多选择。
27 2
|
17天前
|
分布式计算 大数据 数据处理
技术评测:MaxCompute MaxFrame——阿里云自研分布式计算框架的Python编程接口
随着大数据和人工智能技术的发展,数据处理的需求日益增长。阿里云推出的MaxCompute MaxFrame(简称“MaxFrame”)是一个专为Python开发者设计的分布式计算框架,它不仅支持Python编程接口,还能直接利用MaxCompute的云原生大数据计算资源和服务。本文将通过一系列最佳实践测评,探讨MaxFrame在分布式Pandas处理以及大语言模型数据处理场景中的表现,并分析其在实际工作中的应用潜力。
53 2
|
30天前
|
小程序 开发者 Python
探索Python编程:从基础到实战
本文将引导你走进Python编程的世界,从基础语法开始,逐步深入到实战项目。我们将一起探讨如何在编程中发挥创意,解决问题,并分享一些实用的技巧和心得。无论你是编程新手还是有一定经验的开发者,这篇文章都将为你提供有价值的参考。让我们一起开启Python编程的探索之旅吧!
48 10
|
1月前
|
机器学习/深度学习 人工智能 Java
Python 语言:强大、灵活与高效的编程之选
本文全面介绍了 Python 编程语言,涵盖其历史、特点、应用领域及核心概念。从 1989 年由 Guido van Rossum 创立至今,Python 凭借简洁的语法和强大的功能,成为数据科学、AI、Web 开发等领域的首选语言。文章还详细探讨了 Python 的语法基础、数据结构、面向对象编程等内容,旨在帮助读者深入了解并有效利用 Python 进行编程。
|
1月前
|
机器学习/深度学习 人工智能 数据挖掘
探索Python编程的奥秘
在数字世界的海洋中,Python如同一艘灵活的帆船,引领着无数探险者穿梭于数据的波涛之中。本文将带你领略Python编程的魅力,从基础语法到实际应用,一步步揭开Python的神秘面纱。
45 12