基于龙格库塔算法的SIR病毒扩散预测matlab仿真

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 该程序使用龙格库塔算法实现SIR模型预测病毒扩散,输出易感、感染和康复人群曲线。在MATLAB2022a中运行显示预测结果。核心代码设置时间区间、参数,并定义微分方程组,通过Runge-Kutta方法求解。SIR模型描述三类人群动态变化,常微分方程组刻画相互转化。模型用于预测疫情趋势,支持公共卫生决策,但也存在局限性,如忽略空间结构和人口异质性。

1.程序功能描述
基于龙格库塔算法的SIR病毒扩散预测,通过龙格库塔算法求解传染病模型的微分方程。输出易受感染人群数量曲线,感染人群数量曲线,康复人群数量曲线。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行
1.jpeg
2.jpeg
3.jpeg

3.核心程序
```Time1 = 1; % 设定时间区间的起始点a为1
Time2 = 215; % 设定时间区间的终止点b为215
Ra0 = 2.79; % 设定基本再生数R_0为2.79
Popu = 9969510; % 设定总人口数
Popv = 2387785; % 设定已接种疫苗的人数
Seck0 = 116; % 设定初始感染者人数
Recv0 = 1232727; % 设定初始康复者人数
gamma = 1/10; % 设定康复率gamma为1/10
Seck1 = Popu - Popv - Recv0; % 计算初始易感者人数
beta = (Ra0gamma)/(Seck1); % 计算感染率beta
% 设定初始状态向量y,包括易感者、感染者和康复者
y = [Seck1, Seck0, Recv0];
f = @(t,y) [-beta
y(1)y(2); y(2)(betay(1) - gamma); gammay(2)]; % 定义微分方程组

[t,w] = func_rungekutta(Time1,Time2,360,y,f); % 使用Runge-Kutta方法求解微分方程组

figure(1) % 创建第一个图形窗口
hold on; % 保持当前图形,以便在同一图形上绘制多条曲线
plot(t,w,"LineWidth",2); % 绘制曲线,线宽为2
legend('易受感染','感染','恢复');
title('新冠-洛杉矶'); % 添加标题
xlabel('时间 (days)');
ylabel('人口');

```

4.本算法原理
SIR模型是传染病动力学中经典的数学模型之一,用于描述在封闭人群中疾病的传播过程。模型假设人群被分为三个互不相交的类别:易感者(Susceptible,记为S),感染者(Infected,记为I),和康复者(Recovered,记为R)。SIR模型通过一组常微分方程来描述这三类人群之间的动态变化。SIR模型可以用以下常微分方程组来表示:

7a5d59c405ac3510365eb017833f54bd_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

SIR模型解释

第一个方程描述了易感者人数的减少,这是由于易感者与感染者接触后被感染。
第二个方程描述了感染者人数的变化,它由两部分组成:新感染的人数(正比于易感者和感染者的乘积)和康复的人数(正比于感染者人数)。
第三个方程描述了康复者人数的增加,它与感染者康复的人数相等。
初始条件和参数

    为了求解SIR模型,需要设定初始条件 (S(0)),(I(0)),和 (R(0)),以及参数 (\beta) 和 (\gamma)。初始条件通常根据疫情爆发初期的观察数据来确定,而参数则需要通过拟合模型到实际数据来估计。

模型求解

    SIR模型可以通过多种方法求解,包括解析解法和数值解法。对于非线性微分方程,通常使用数值解法,如欧拉法、龙格-库塔法等。在实际应用中,由于模型通常是非线性的,因此数值解法更为常用。

预测和控制

    通过求解SIR模型,可以预测未来一段时间内感染者人数的变化趋势,从而为公共卫生决策提供支持。例如,可以预测疫情高峰到来的时间和规模,评估不同干预措施(如社交隔离、疫苗接种等)对疫情发展的影响。

模型局限性

   尽管SIR模型在描述疾病传播方面非常有用,但它也有一些局限性。例如,它假设人群是均匀混合的,忽略了空间结构和人口异质性;它假设康复者不会再次感染,这在某些情况下可能不成立;此外,模型参数可能需要随着疫情的发展而调整。
相关文章
|
7天前
|
算法 Serverless
基于魏格纳函数和焦散线方法的自加速光束matlab模拟与仿真
本项目基于魏格纳函数和焦散线方法,使用MATLAB 2022A模拟自加速光束。通过魏格纳函数法生成多种自加速光束,并设计相应方法,展示仿真结果。核心程序包括相位和幅度的计算、光场分布及拟合分析,实现对光束传播特性的精确控制。应用领域涵盖光学成像、光操控和光束聚焦等。 关键步骤: 1. 利用魏格纳函数计算光场分布。 2. 模拟并展示自加速光束的相位和幅度图像。 3. 通过拟合分析,验证光束加速特性。 该算法原理基于魏格纳函数描述光场分布,结合数值模拟技术,实现对光束形状和传播特性的精确控制。通过调整光束相位分布,可改变其传播特性,如聚焦或加速。
|
4天前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
|
6天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
5天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
253 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
150 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
121 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
8月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
8月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)