Streamlit入门指南

本文涉及的产品
RDS MySQL DuckDB 分析主实例,集群系列 4核8GB
RDS AI 助手,专业版
简介: Streamlit是Python库,用于创建交互式数据科学和机器学习Web应用。它简化了定制Web应用的创建,提供内置小部件和工具进行数据展示、用户输入处理和自定义可视化。快速入门涉及安装Streamlit、导入库、定义应用并使用`streamlit run`命令运行。示例代码展示了如何创建一个显示滑块和正弦图的应用。最佳实践包括组织代码、利用缓存、优化布局以及使用内置功能。Streamlit Gallery提供了更多应用示例,如文本生成器和图像分类器。

Streamlit介绍

Streamlit是一个Python库,允许您创建交互式的数据科学和机器学习Web应用程序。使用Streamlit,您可以快速轻松地创建自定义Web应用程序,让用户与您的数据和模型进行交互。

Streamlit旨在简单直观,专注于通过几行代码轻松创建美观和功能强大的应用程序。它包括广泛的内置小部件和工具,用于显示数据,处理用户输入和创建自定义可视化。

快速入门指南

要开始使用Streamlit,请按照以下步骤操作:

使用pip安装Streamlit:pip install streamlit 创建一个新的Python文件并导入Streamlit:import streamlit as st 使用Streamlit的API定义您的应用程序,其中包括用于创建小部件,显示数据和处理用户输入的函数。 使用命令streamlit run <filename.py>运行您的应用程序。 以下是一个简单的Streamlit应用程序示例,显示滑块小部件和绘图:

python

复制代码

import streamlit as st
import numpy as np
import matplotlib.pyplot as plt

# 定义滑块小部件
x = st.slider('选择x的值', 0.0, 10.0, 5.0)

# 根据滑块值创建绘图
y = np.sin(x)
plt.plot(x, y)
st.pyplot()

该应用程序显示一个滑块小部件,允许用户选择x的值,然后根据该值显示正弦函数的绘图。您可以将此应用程序保存为Python文件(例如myapp.py),然后在终端中运行命令streamlit run myapp.py来运行该应用程序。

最佳实践

以下是使用Streamlit时应记住的最佳实践:

保持代码组织和模块化,清晰分离应用程序的不同组件。 使用Streamlit的缓存功能来提高性能并避免不必要的计算。 使用Streamlit的布局选项创建干净直观的用户界面。 尽可能使用Streamlit的内置小部件和工具,而不是重新发明轮子。 充分测试您的应用程序,包括边缘情况和错误处理。 考虑使用像Git这样的版本控制系统来管理您的代码并与他人合作。 通过遵循这些最佳实践,您可以创建高质量的Streamlit应用程序,易于使用,维护和扩展。

其它一些有趣的例子

Streamlit官方有一个应用程序和图表库 Streamlit Gallery,其中包括各种各样的示例,从简单的小部件到复杂的机器学习模型。

下面基于我最近的学习,提供两个有趣的实例。

文本生成器

python

复制代码

import streamlit as st
import markovify

# 读取文本文件
with open("text.txt") as f:
    text = f.read()

# 使用Markov模型生成文本
text_model = markovify.Text(text)

# 创建Streamlit应用程序
st.title("文本生成器")
with st.form(key='my_form'):
    submit_button = st.form_submit_button(label='生成文本')
    if submit_button:
        # 生成文本
        generated_text = text_model.make_sentence()
        # 显示生成的文本
        st.write(generated_text)

这个应用程序使用Markov模型生成文本。用户可以上传自己的文本文件,然后使用应用程序生成新的文本。应用程序使用Streamlit的表单小部件来处理用户输入和提交。

图像分类器

python

复制代码

import streamlit as st
import tensorflow as tf
from PIL import Image
import numpy as np

# 加载模型
model = tf.keras.models.load_model('model.h5')

# 创建Streamlit应用程序
st.title("图像分类器")
uploaded_file = st.file_uploader("上传一张图片", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
    # 加载图像
    image = Image.open(uploaded_file)
    # 调整图像大小
    image = image.resize((224, 224))
    # 转换为NumPy数组
    image_array = np.array(image)
    # 扩展维度
    image_array = np.expand_dims(image_array, axis=0)
    # 预测图像类别
    predictions = model.predict(image_array)
    # 获取最高概率的类别
    predicted_class = np.argmax(predictions[0])
    # 显示预测结果
    st.write("预测结果:", predicted_class)

这个应用程序使用TensorFlow模型来对上传的图像进行分类。用户可以上传一张图像,然后应用程序将使用模型对图像进行分类,并显示预测结果。应用程序使用Streamlit的文件上传小部件来处理用户输入。

转载来源:https://juejin.cn/post/7275595720488009740

相关文章
|
定位技术
Streamlit的第一个应用(二)(下)
Streamlit的第一个应用(二)
610 0
|
存储 设计模式 前端开发
Streamlit应用中构建多页面(三):两种方案(上)
Streamlit应用中构建多页面(三):两种方案
4477 0
|
机器学习/深度学习 JavaScript Python
Streamlit应用打包发布
搞事情还是非常累的,那么这里的话就简单更新一下使用实用一点的文章。这也是在实际过程当中遇到了很多问题,最终才解决之后的一篇经验文吧。 打包准备 这里我使用到的打包软件还是Pyinstaller ,通过这个来对其进行打包,软件本体大概是长这个样子:
|
存储 缓存 数据可视化
(七)解析Streamlit的数据元素:探索st.dataframe、st.data_editor、st.column_config、st.table、st.metric和st.json的神奇之处(上)
(七)解析Streamlit的数据元素:探索st.dataframe、st.data_editor、st.column_config、st.table、st.metric和st.json的神奇之处
6993 0
|
10月前
|
机器学习/深度学习 人工智能 自然语言处理
通义千问Qwen3,开源!
Qwen3正式发布并全部开源啦!
4858 50
|
Linux 网络安全 Python
linux centos上安装python3.11.x详细完整教程
这篇文章提供了在CentOS系统上安装Python 3.11.x版本的详细步骤,包括下载、解压、安装依赖、编译配置、解决常见错误以及版本验证。
11005 3
linux centos上安装python3.11.x详细完整教程
|
10月前
|
存储 缓存 文件存储
uv安装python及其依赖的加速方法
国内在使用uv的时候,可能会涉及到装python的速度太慢的问题,为了解决这个问题,可以使用`UV_PYTHON_INSTALL_MIRROR`这个环境变量。除此以外,对于多人协作场景,`UV_CACHE_DIR`也是一个有用的环境变量。本文会介绍这两个变量。
6715 10
|
人工智能 API 决策智能
智胜未来:国内大模型+Agent应用案例精选,以及主流Agent框架开源项目推荐
【7月更文挑战第8天】智胜未来:国内大模型+Agent应用案例精选,以及主流Agent框架开源项目推荐
18370 134
智胜未来:国内大模型+Agent应用案例精选,以及主流Agent框架开源项目推荐
|
Python
使用pycharm 开发streamlit的项目启动
要在 PyCharm 中配置 Streamlit 环境并调试应用,请按以下步骤操作:1. 确保 PyCharm 配置了 Python 解释器并安装 Streamlit 包(File -&gt; Settings -&gt; Project -&gt; Python Interpreter)。2. 配置调试运行设置(Run -&gt; Edit Configurations,添加 Python 配置并命名)。3. 选择新配置并点击调试按钮启动应用。
1551 23
|
数据可视化 前端开发 数据安全/隐私保护
Streamlit快速构建数据应用程序
【10月更文挑战第21天】Streamlit 是一个开源的 Python 库,用于快速构建数据应用程序。它简化了数据可视化的开发过程,允许用户通过简单的 Python 脚本创建交互式应用,而无需编写复杂的前端代码。本文介绍了 Streamlit 的基本概念、安装方法、示例应用的创建、扩展功能及部署方法,展示了其在 Python 可视化领域的潜力和优势。