spark实战:实现分区内求最大值,分区间求和以及获取日志文件固定日期的请求路径

简介: spark实战:实现分区内求最大值,分区间求和以及获取日志文件固定日期的请求路径

spark实战:实现分区内求最大值,分区间求和以及获取日志文件固定日期的请求路径

Apache Spark是一个广泛使用的开源大数据处理框架,以其快速、易用和灵活的特点而受到开发者的青睐。在本文中,我们将通过两个具体的编程任务来展示Spark的强大功能:首先是对一个简单的数据列表进行分区操作,并在每个分区内求最大值以及跨分区间求和;其次是从Apache日志文件中提取特定日期的请求路径。这两个任务将帮助你理解Spark在数据处理和日志分析方面的应用。

问题一:数据处理 - 分区内求最大值,分区间求和

给定一个包含键值对的列表 List((“a”, 1),(“a”, 2), (“b”, 3), (“b”, 4),(“b”, 5),(“a”, 6)),任务是将这个列表分成两个分区,并在每个分区内找到最大值,同时计算所有分区间的总和。

解决方案

1、创建SparkSession:初始化Spark环境。

2、数据转换:将列表转换为RDD或DataFrame。

3、分区操作:将数据分成两个分区。

4、求最大值:在每个分区内使用reduce或aggregate操作求得最大值。

5、求总和:使用collect操作收集所有数据,然后求和。

示例代码

import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions._

object MaxAndSumExample {
  def main(args: Array[String]): Unit = {
    // 创建Spark会话
    val spark = SparkSession.builder()
      .appName("MaxAndSumExample")
      .master("local[*]") // 使用本地模式,根据需要可以改为集群模式
      .getOrCreate()

    import spark.implicits._

    // 给定的列表
    val data = List(("a", 1), ("a", 2), ("b", 3), ("b", 4), ("b", 5), ("a", 6))

    // 将列表转换为DataFrame
    val df = data.toDF("key", "value")

    // 设置分区数为2
    val partitionedDF = df.repartition(2)

    // 分区内求最大值
    val maxPerPartition = partitionedDF.groupBy("key").agg(max($"value").alias("maxValue"))

    // 分区间求和
    val sumAcrossPartitions = df.groupBy("key").sum("value")

    // 显示结果
    maxPerPartition.show()
    sumAcrossPartitions.show()

    // 停止Spark会话
    spark.stop()
  }
}

问题二:日志分析 - 提取特定日期的请求路径

任务描述

从Apache日志文件中提取2015年5月17日的所有请求路径。

解决方案

1、日志文件读取:使用Spark读取日志文件。

2、日志解析:编写函数解析每行日志,提取日期和请求路径。

3、日期过滤:根据日期过滤日志行。

4、提取请求路径:从过滤后的日志中提取请求路径。

示例代码

import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.functions._

object MaxAndSumExample {
  def main(args: Array[String]): Unit = {
    // 创建Spark会话
    val spark = SparkSession.builder()
      .appName("MaxAndSumExample")
      .master("local[*]") // 使用本地模式,根据需要可以改为集群模式
      .getOrCreate()

    import spark.implicits._

    // 给定的列表
    val data = List(("a", 1), ("a", 2), ("b", 3), ("b", 4), ("b", 5), ("a", 6))

    // 将列表转换为DataFrame
    val df = data.toDF("key", "value")

    // 设置分区数为2
    val partitionedDF = df.repartition(2)

    // 分区内求最大值
    val maxPerPartition = partitionedDF.groupBy("key").agg(max($"value").alias("maxValue"))

    // 分区间求和
    val sumAcrossPartitions = df.groupBy("key").sum("value")

    // 显示结果
    maxPerPartition.show()
    sumAcrossPartitions.show()

    // 停止Spark会话
    spark.stop()
  }
}

结论

通过这两个示例,我们可以看到Apache Spark在处理数据列表和分析日志文件方面的强大能力。第一个示例展示了如何在Spark中进行基本的数据转换、分区操作和聚合操作。第二个示例则展示了如何读取和解析日志文件,以及如何根据特定条件过滤数据。这些技能在处理大数据时非常有用,可以帮助我们快速获得所需的信息。

相关实践学习
通过日志服务实现云资源OSS的安全审计
本实验介绍如何通过日志服务实现云资源OSS的安全审计。
相关文章
|
8月前
|
人工智能 分布式计算 大数据
大数据≠大样本:基于Spark的特征降维实战(提升10倍训练效率)
本文探讨了大数据场景下降维的核心问题与解决方案,重点分析了“维度灾难”对模型性能的影响及特征冗余的陷阱。通过数学证明与实际案例,揭示高维空间中样本稀疏性问题,并提出基于Spark的分布式降维技术选型与优化策略。文章详细展示了PCA在亿级用户画像中的应用,包括数据准备、核心实现与效果评估,同时深入探讨了协方差矩阵计算与特征值分解的并行优化方法。此外,还介绍了动态维度调整、非线性特征处理及降维与其他AI技术的协同效应,为生产环境提供了最佳实践指南。最终总结出降维的本质与工程实践原则,展望未来发展方向。
413 0
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
1033 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
7月前
|
运维 安全 数据可视化
日志审查安排工具实战攻略:中小团队如何通过日志审查安排工具建立可控、安全的审查机制?
在审计敏感时代,日志审查安排工具成为安全运维与合规管理的关键利器。它实现审查任务的流程化、周期化与可视化,支持多系统协作、责任到人,确保“可控、可查、可追”的日志治理。工具如板栗看板、Asana、Monday 等提供任务调度、问题闭环与合规对接能力,助力企业构建高效、透明的日志审查体系,提升安全与合规水平。
|
存储 运维 监控
超越传统模型:从零开始构建高效的日志分析平台——基于Elasticsearch的实战指南
【10月更文挑战第8天】随着互联网应用和微服务架构的普及,系统产生的日志数据量日益增长。有效地收集、存储、检索和分析这些日志对于监控系统健康状态、快速定位问题以及优化性能至关重要。Elasticsearch 作为一种分布式的搜索和分析引擎,以其强大的全文检索能力和实时数据分析能力成为日志处理的理想选择。
950 6
|
8月前
|
人工智能 运维 监控
Aipy实战:分析apache2日志中的网站攻击痕迹
Apache2日志系统灵活且信息全面,但安全分析、实时分析和合规性审计存在较高技术门槛。为降低难度,可借助AI工具如aipy高效分析日志,快速发现攻击痕迹并提供反制措施。通过结合AI与学习技术知识,新手运维人员能更轻松掌握复杂日志分析任务,提升工作效率与技能水平。
|
12月前
|
SQL 分布式计算 Serverless
基于阿里云 EMR Serverless Spark 版快速搭建OSS日志分析应用
基于阿里云 EMR Serverless Spark 版快速搭建OSS日志分析应用
292 0
|
Java 程序员 应用服务中间件
「测试线排查的一些经验-中篇」&& 调试日志实战
「测试线排查的一些经验-中篇」&& 调试日志实战
242 1
「测试线排查的一些经验-中篇」&& 调试日志实战
|
Java Maven Spring
超实用的SpringAOP实战之日志记录
【11月更文挑战第11天】本文介绍了如何使用 Spring AOP 实现日志记录功能。首先概述了日志记录的重要性及 Spring AOP 的优势,然后详细讲解了搭建 Spring AOP 环境、定义日志切面、优化日志内容和格式的方法,最后通过测试验证日志记录功能的准确性和完整性。通过这些步骤,可以有效提升系统的可维护性和可追踪性。
438 1
|
存储 分布式计算 供应链
Spark在供应链核算中应用问题之调整Spark读取ODPS离线表分区大小如何解决
Spark在供应链核算中应用问题之调整Spark读取ODPS离线表分区大小如何解决
|
分布式计算 并行计算 数据处理