实现多文件合并和去重的MapReduce作业

简介: 实现多文件合并和去重的MapReduce作业

实现多文件合并和去重的MapReduce作业

问题描述

我们有多个文本文件,每个文件包含一些文本行。我们的目标是将这些文件合并成一个文件,并去除重复的行,最终得到一个去重后的文本文件。

输入文件A数据如下:


输入文件B数据如下:


Mapper

Mapper负责读取输入文件的内容,并将每一行文本作为键,值为空写入输出。

public class MergeAndDeduplicateMapper extends Mapper<Object, Text, Text, NullWritable> {

    private Text fileLine = new Text();

    @Override
    public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
        // 以整行文本作为 Mapper 输出的键
        fileLine.set(value);
        context.write(fileLine, NullWritable.get());
    }
}

Reducer

Reducer接收到Mapper输出的键值对,直接将键输出到文件中,实现去重操作。

public class MergeAndDeduplicateReducer extends Reducer<Text, NullWritable, Text, NullWritable> {

    @Override
    public void reduce(Text key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException {
        // 以键直接输出,实现去重操作
        context.write(key, NullWritable.get());
    }
}

Driver程序

驱动程序负责配置和运行MapReduce作业。

public class MergeAndDeduplicate {

    public static void main(String[] args) throws Exception {
        // 创建 MapReduce 任务
        Job job = Job.getInstance();
        job.setJarByClass(MergeAndDeduplicate.class);

        // 配置 Mapper 和 Reducer 类
        job.setMapperClass(MergeAndDeduplicateMapper.class);
        job.setReducerClass(MergeAndDeduplicateReducer.class);

        // 配置输出键值对类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(NullWritable.class);

        // 配置输入和输出路径
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        // 提交任务并等待完成
        System.exit(job.waitForCompletion(true) ? 0 : 1);
    }
}

运行作业

要运行MapReduce作业,您需要将上述代码打包成一个可执行的Jar文件,并将其提交到Hadoop集群上运行。

hadoop jar MergeAndDeduplicate.jar org.example.mapReduce.MergeAndDeduplicate input output


结论

通过上述MapReduce作业,我们成功地将多个文件合并成一个文件,并且去除了重复的行。

MapReduce框架提供了一个高效的分布式计算解决方案,能够处理大规模的数据集,使得数据处理变得更加简单和高效。

相关文章
|
6月前
|
存储 分布式计算 监控
Hadoop【基础知识 01+02】【分布式文件系统HDFS设计原理+特点+存储原理】(部分图片来源于网络)【分布式计算框架MapReduce核心概念+编程模型+combiner&partitioner+词频统计案例解析与进阶+作业的生命周期】(图片来源于网络)
【4月更文挑战第3天】【分布式文件系统HDFS设计原理+特点+存储原理】(部分图片来源于网络)【分布式计算框架MapReduce核心概念+编程模型+combiner&partitioner+词频统计案例解析与进阶+作业的生命周期】(图片来源于网络)
299 2
|
5月前
|
分布式计算 大数据
mapreduce 实现带有ex前缀的词频统计wordcount 大作业
mapreduce 实现带有ex前缀的词频统计wordcount 大作业
|
6月前
|
数据采集 分布式计算 DataWorks
DataWorks产品使用合集之在DataWorks中,在MapReduce作业中指定两个表的所有分区如何解决
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
81 0
|
6月前
|
分布式计算 监控 Hadoop
Hadoop【基础知识 02】【分布式计算框架MapReduce核心概念+编程模型+combiner&partitioner+词频统计案例解析与进阶+作业的生命周期】(图片来源于网络)
【4月更文挑战第3天】Hadoop【基础知识 02】【分布式计算框架MapReduce核心概念+编程模型+combiner&partitioner+词频统计案例解析与进阶+作业的生命周期】(图片来源于网络)
265 0
|
资源调度 分布式计算 Java
MapReduce作业在YARN的内存分配设置
MapReduce作业在YARN的内存分配设置
375 0
MapReduce作业在YARN的内存分配设置
|
消息中间件 大数据 测试技术
如何在E-MapReduce上提交Storm作业处理Kafka数据
本文演示如何在E-MapReduce上部署Storm集群和Kafka集群,并运行Storm作业消费Kafka数据。
2816 0
|
资源调度 分布式计算 调度
Yarn源码分析之MapReduce作业中任务Task调度整体流程(一)
        v2版本的MapReduce作业中,作业JOB_SETUP_COMPLETED事件的发生,即作业SETUP阶段完成事件,会触发作业由SETUP状态转换到RUNNING状态,而作业状态转换中涉及作业信息的处理,是由SetupCompletedTransition来完成的,它主要做了...
1155 0
|
分布式计算 调度
MapReduce源码分析之作业Job状态机解析(一)简介与正常流程浅析
        作业Job状态机维护了MapReduce作业的整个生命周期,即从提交到运行结束的整个过程。Job状态机被封装在JobImpl中,其主要包括14种状态和19种导致状态发生的事件。         作业Job的全部状态维护在类JobStateInternal中,如下所示: publ...
1020 0
|
分布式计算 监控 Java
0019-Yarn的JobHistory目录权限问题导致MapReduce作业异常
温馨提示:要看高清无码套图,请使用手机打开并单击图片放大查看。 1.问题描述 Hive的MapReduce作业无法正常运行,日志如下: 0: jdbc:hive2://localhost:10000_>_select count(*) from student; … command(queryId.
1350 0
|
消息中间件 分布式计算 Hadoop
使用E-MapReduce提交Storm作业处理Kafka数据
本文演示如何在E-MapReduce上部署Storm集群和Kafka集群,并运行Storm作业消费Kafka数据。 环境准备 本文选择在杭州Region进行测试,版本选择EMR-3.
2185 0