多模态大模型不够灵活,谷歌DeepMind创新架构Zipper:分开训练再压缩

简介: 【6月更文挑战第12天】谷歌DeepMind的Zipper架构解决了多模态大模型灵活性问题,通过分解为单模态模型并用“压缩”过程组合,实现多模态生成。该方法允许独立训练每个模态,提升灵活性和可扩展性,适用于数据有限或领域特定的模态。Zipper利用交叉注意力机制融合模态输出,适用于图像描述、语音识别等任务。尽管需要更多计算资源且性能受限于单模态模型质量,但已在ASR和TTS领域展现潜力。论文链接:https://arxiv.org/pdf/2405.18669

在多模态大模型领域,谷歌DeepMind最近提出了一种名为Zipper的创新架构,旨在解决当前多模态大模型灵活性不足的问题。Zipper的核心思想是将多模态大模型分解为多个单模态模型,然后通过一种名为“压缩”的过程将它们组合在一起,从而实现多模态生成能力。

Zipper的主要优势在于其灵活性和可扩展性。通过将多模态大模型分解为多个单模态模型,Zipper使得研究人员能够独立地训练和优化每个模态的模型,而无需担心其他模态的干扰。这对于那些数据量有限或者领域特定的模态来说尤为重要,因为它们可能无法从多模态训练中获得足够的关注。

此外,Zipper还通过“压缩”过程实现了多模态生成能力。具体来说,Zipper使用一种名为“交叉注意力”的机制,将多个单模态模型的输出进行融合,从而生成多模态的输出。这种机制使得Zipper能够灵活地组合不同的模态,从而实现各种多模态生成任务,如图像描述生成、语音识别等。

在实际应用中,Zipper已经在多个领域展示了其潜力。例如,在自动语音识别(ASR)领域,Zipper通过将文本和语音模型进行压缩,实现了出色的性能,甚至超过了一些基于词汇扩展的方法。在文本到语音生成(TTS)领域,Zipper通过使用一个预训练的语音模型作为基础,实现了更好的性能。

然而,Zipper也存在一些挑战和局限性。首先,Zipper的灵活性和可扩展性也意味着它需要更多的计算资源和数据来训练和优化。其次,Zipper的性能可能受到单模态模型的质量和多样性的限制,如果某些模态的模型质量较差,可能会影响整个系统的生成效果。

此外,Zipper的“压缩”过程也需要仔细设计和优化。例如,交叉注意力机制的参数设置、单模态模型的输出表示等都需要仔细调整,以确保最佳的生成效果。

论文链接:https://arxiv.org/pdf/2405.18669

目录
打赏
0
3
3
1
396
分享
相关文章
从“看图说话”到“脑补世界”:多模态大模型的进化之路
从“看图说话”到“脑补世界”:多模态大模型的进化之路
151 63
阿里云AirCache技术实现多模态大模型高效推理加速,入选国际顶会ICCV2025
阿里云研发的AirCache技术被计算机视觉顶会ICCV2025收录,该技术通过激活跨模态关联、优化KV缓存压缩策略,显著提升视觉语言模型(VLMs)的推理效率与存储性能。实验表明,在保留仅10%视觉缓存的情况下,模型性能下降小于1%,解码延迟最高降低66%,吞吐量提升达192%。AirCache无需修改模型结构,兼容主流VLMs,已在教育、医疗、政务等多个行业落地应用,助力多模态大模型高效赋能产业智能化升级。
📣通义大模型新成员Qwen-VLo,重磅上线,它实现了从“看懂”世界到“描绘”世界
通义千问团队推出全新多模态统一理解与生成模型Qwen VLo,具备强大的图像理解与生成能力。它不仅能“看懂”图像内容,还能基于理解进行高质量再创造,实现从感知到生成的跨越。支持开放指令编辑、多语言交互及复杂任务处理,适用于图像生成、风格迁移、检测标注等多种场景。
215 0
SingLoRA:单矩阵架构减半参数量,让大模型微调更稳定高效
SingLoRA是一种创新的低秩适应方法,通过单矩阵对称更新策略,有效提升模型微调的训练稳定性与参数效率。相比传统LoRA,其结构更简洁,参数更少,且无需复杂超参数调整,适用于大模型高效部署。
28 3
SingLoRA:单矩阵架构减半参数量,让大模型微调更稳定高效
通义OmniAudio大模型,让 AI 看懂 360° 视频,并“听”出对应的空间音频
OmniAudio 是一项突破性的空间音频生成技术,能够直接从 360° 视频生成 FOA(First-order Ambisonics)空间音频,为虚拟现实和沉浸式娱乐带来全新可能。通过自监督 coarse-to-fine 预训练和双分支视频表示微调,OmniAudio 在非空间音频质量和空间定位准确性上显著优于现有方法。项目包含超过 103,000 个视频片段的 Sphere360 数据集,支持高质量的模型训练与评估。代码、数据及论文均已开源,助力沉浸式体验技术发展。
289 62
DeepSeek-R1技术突破:纯RL训练竟能激发大模型"反思"能力?
仅通过强化学习(RL)训练,无需监督微调(SFT),就能让大模型自发产生带有反思的思维链(long CoT)。这一发现颠覆了此前行业对模型训练范式的认知。
82 3
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等