YOLOv8改进 | Neck | 在网络中替换c2f为融合蛇形卷积的C2f_DySnakeConv

简介: 本专栏介绍的DSCNet采用蛇形动态卷积,增强对细长弯曲结构(如血管)的特征提取。该卷积操作灵感来自蛇形曲线,能自适应调整权重以关注管状结构局部特征。通过动态卷积核,网络能更好地处理形状变异,提升目标检测的准确性和鲁棒性。

💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡

蛇形动态卷积是一种新型的卷积操作,旨在提高对细长和弯曲的管状结构的特征提取能力。它通过自适应地调整卷积核的权重,使得网络能够更加关注管状结构的局部特征,如血管的分叉和弯曲部分。这种卷积操作的设计灵感来源于蛇形曲线,它能够在不同尺度上捕捉到管状结构的细节信息,从而提高准确性。通过在卷积过程中引入这种动态性,DSCNet能够更有效地处理管状结构的复杂性和变异性,为后续的特征融合提供更精细的信息。

1.原理

image.png

官方论文:Dynamic Snake Convolution based on Topological Geometric Constraints for Tubular Structure Segmentation——点击即可跳转

代码实现:官方代码仓库——点击即可跳转

动态蛇形卷积(Dynamic Snake Convolution)的设计灵感来源于蛇形的形状,用于改善对目标形状和边界的敏感性。能够帮助神经网络更好地捕捉目标的形状信息,特别是对于复杂的或不规则形状的目标。通过引入动态的、可变形的卷积核来实现这一目标。这种可变形的卷积核能够根据目标的形状和边界信息进行调整,从而更好地适应目标的特定形状。

传统的卷积操作在处理目标形状变化较大的情况下可能存在一定的局限性,而动态蛇形卷积则能够通过自适应性地调整卷积核的形状和大小,更有效地捕获目标的特征。

这种模块的应用通常能够增强目标检测模型对不同尺度、形状和姿态的目标的感知能力,从而提高目标检测的准确性和鲁棒性。虽然这只是目标检测中的一种模块,但它代表了在深度学习领域中不断创新和改进的努力,以提高模型对复杂场景的理解能力。

蛇形动态卷积(Snake-like Dynamic Convolution)是一种卷积神经网络中的技术,旨在提升卷积操作的灵活性和适应性,以便更好地捕捉和表征图像中的复杂结构。以下是蛇形动态卷积的基本原理和其核心概念的详细讲解:

1. 卷积操作的基本概念

在传统的卷积神经网络(CNN)中,卷积层使用固定形状的滤波器(卷积核)在图像上滑动,执行点积运算,从而提取局部特征。这些滤波器的参数在训练过程中被学习,并在整个输入图像上重复使用。

2. 动态卷积的引入

传统卷积的局限性在于,固定形状和参数的卷积核可能无法适应图像中复杂和多样的局部结构。为了解决这一问题,动态卷积应运而生。动态卷积的核心思想是,根据输入数据动态调整卷积核的参数,使其更加适应局部特征。

3. 蛇形动态卷积的具体机制

蛇形动态卷积是动态卷积的一种特殊形式,其名称源于卷积核的形状和应用方式。其主要特点如下:

a. 蛇形核形状

蛇形动态卷积核的形状不是固定的矩形或方形,而是类似于蛇形路径。这样设计的目的是为了能够更灵活地捕捉图像中的曲线和非直线结构。这种核形状可以更好地适应图像中的复杂边缘和纹理。

b. 动态调整权重

蛇形动态卷积的权重不是固定的,而是根据输入数据动态生成的。通常使用一个生成网络(如小型卷积网络或注意力机制)来根据当前输入生成适应性的权重。这些权重在卷积操作时被应用,从而使得卷积核在不同位置具有不同的特性。

c. 多尺度特征提取

蛇形动态卷积可以通过不同尺度的卷积核捕捉图像中的多尺度特征。通过结合不同尺度的特征,可以更全面地描述图像中的结构信息。

4. 蛇形动态卷积的优势

  • 更强的特征表达能力:通过动态调整卷积核的形状和权重,蛇形动态卷积可以更好地适应图像中的多样性和复杂性,从而提取更加丰富和准确的特征。
  • 灵活性和适应性:这种卷积方式能够根据输入的变化动态调整自身,从而在处理不同类型的图像和任务时具有更好的适应性。
  • 提升模型性能:在实际应用中,蛇形动态卷积常常能够提升图像分类、目标检测和语义分割等任务的性能。

蛇形动态卷积是一种创新的卷积操作方式,通过引入动态权重调整和灵活的核形状,能够更好地捕捉图像中的复杂结构特征。这种方法在许多计算机视觉任务中展示了其优越性和潜力。

2. 蛇形动态卷积的代码实现

2.1 将蛇形动态卷积添加到YOLOv8中

关键步骤一:将下面代码粘贴到在/ultralytics/ultralytics/nn/modules/conv.py中,并在该文件的__all__中添加“DySnakeConv”

class Bottleneck_DySnakeConv(nn.Module):
    # Standard bottleneck with DCN
    def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):  # ch_in, ch_out, shortcut-残差连接, groups, kernels, expand
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        if k[0] == 3:
            self.cv1 = DySnakeConv(c1, c_, k[0], 1)
        else:
            self.cv1 = Conv(c1, c_, k[0], 1) #self.cv2 = DySnakeConv(c_, c2, 3)
        if k[1] == 3:
            self.cv2 = DySnakeConv(c_, c2, k[1])
        else:
            self.cv2 = Conv(c_, c2, k[1], 1, g=g)
        self.add = shortcut and c1 == c2 #如果残差连接以及通道数等

    def forward(self, x):
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))

class C2f_DySnakeConv(nn.Module):
    # CSP Bottleneck with 2 convolutions #两个卷积的梯度流
    def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        self.c = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, 2 * self.c, 1, 1)
        self.cv2 = Conv((2 + n) * self.c, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.ModuleList(Bottleneck_DySnakeConv(self.c, self.c, shortcut, g, k=(3, 3), e=1.0) for _ in range(n)) #Bottleneck

    def forward(self, x):

完整内容:YOLOv8改进 | Neck | 在网络中替换c2f为融合蛇形卷积的C2f_DySnakeConv——点击即可跳转

相关文章
|
16天前
|
存储 安全 网络安全
云计算与网络安全:技术融合的未来之路
【10月更文挑战第30天】在数字化浪潮的推动下,云计算已成为企业信息技术架构的核心。然而,随之而来的网络安全问题也日益凸显。本文将探讨云计算与网络安全的关系,分析云服务中的安全挑战,并提出相应的解决方案。我们将通过实例展示如何在云计算环境中实现网络安全的最佳实践,以期为读者提供一条技术融合的未来之路。
|
18天前
|
机器学习/深度学习 计算机视觉 Python
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力本文提出了一种简单且高效的卷积神经网络(ConvNets)注意力模块——SimAM。与现有模块不同,SimAM通过优化能量函数推断特征图的3D注意力权重,无需添加额外参数。SimAM基于空间抑制理论设计,通过简单的解决方案实现高效计算,提升卷积神经网络的表征能力。代码已在Pytorch-SimAM开源。
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
|
20天前
|
机器学习/深度学习 计算机视觉 网络架构
【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目DWRSeg是一种高效的实时语义分割网络,通过将多尺度特征提取分为区域残差化和语义残差化两步,提高了特征提取效率。它引入了Dilation-wise Residual (DWR) 和 Simple Inverted Residual (SIR) 模块,优化了不同网络阶段的感受野。在Cityscapes和CamVid数据集上的实验表明,DWRSeg在准确性和推理速度之间取得了最佳平衡,达到了72.7%的mIoU,每秒319.5帧。代码和模型已公开。
【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
|
11天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络:从理论到实践
【10月更文挑战第35天】在人工智能的浪潮中,深度学习技术以其强大的数据处理能力成为科技界的宠儿。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,在图像识别和视频分析等领域展现出了惊人的潜力。本文将深入浅出地介绍CNN的工作原理,并结合实际代码示例,带领读者从零开始构建一个简单的CNN模型,探索其在图像分类任务中的应用。通过本文,读者不仅能够理解CNN背后的数学原理,还能学会如何利用现代深度学习框架实现自己的CNN模型。
|
8天前
|
存储 安全 网络安全
云计算与网络安全的融合之路
【10月更文挑战第38天】在数字化浪潮中,云计算和网络安全是推动现代企业前进的两个关键因素。本文深入探讨了云计算服务如何影响网络安全策略,并提供了加强云环境下信息安全的实际措施。文章首先概述了云计算的基本概念及其带来的安全挑战,随后分析了当前网络安全的主要威胁,并提出了相应的防护对策。最后,通过一个代码示例,展示了如何在云环境中实现数据加密,以增强信息的安全性。
|
8天前
|
云安全 安全 网络安全
云计算与网络安全:技术融合的未来之路
【10月更文挑战第38天】 在数字化浪潮中,云计算和网络安全成为支撑现代企业和个人数据安全的两大基石。本文将深入探讨云计算服务如何与网络安全技术相结合,保障信息安全,并分析面临的挑战及未来发展趋势。我们将通过实际案例,揭示云安全的最佳实践,为读者提供一条清晰的技术融合路径。
|
9天前
|
安全 网络安全 数据库
云计算与网络安全:技术融合的未来之路
【10月更文挑战第37天】本文将探讨云计算与网络安全的交汇点,揭示它们如何共同塑造信息安全的未来。我们将深入了解云服务的核心组件、网络安全的关键策略以及两者如何相互增强。通过分析当前的挑战和未来的趋势,本文旨在为读者提供一条清晰的路径,以理解并应对这一不断发展的技术领域。
|
10天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。
|
11天前
|
存储 安全 网络安全
云计算与网络安全:技术融合与挑战
【10月更文挑战第35天】本文将探讨云计算与网络安全的交叉点,包括云服务、网络安全和信息安全等技术领域。我们将深入了解云计算的基本概念,以及如何通过云服务实现网络安全和信息安全。同时,我们还将讨论云计算面临的安全挑战,并提出相应的解决方案。最后,我们将通过代码示例展示如何在云计算环境中实现网络安全和信息安全。
27 3
|
14天前
|
存储 安全 网络安全
云计算与网络安全的融合之路
【10月更文挑战第32天】随着云计算技术的飞速发展,越来越多的企业和个人选择将数据和应用程序迁移到云端。然而,云服务的安全性问题也日益凸显。本文将从云服务的分类、特点出发,探讨如何保障云环境下的网络安全和信息安全。通过分析常见的网络威胁和攻击手段,提出相应的防护策略和建议,旨在为读者提供一条云计算与网络安全融合的实践路径。

热门文章

最新文章