算法金 | 一文彻底理解机器学习 ROC-AUC 指标

简介: ```markdown# ROC曲线与AUC详解:评估分类模型利器本文深入浅出解释ROC曲线和AUC,通过实例和代码帮助理解其在模型评估中的重要性,旨在提升对分类模型性能的理解和应用。```

大侠幸会,在下全网同名「算法金」 0 基础转 AI 上岸,多个算法赛 Top 「日更万日,让更多人享受智能乐趣」

在机器学习和数据科学的江湖中,评估模型的好坏是非常关键的一环。而 ROC(Receiver Operating Characteristic)曲线和 AUC(Area Under Curve)正是评估分类模型性能的重要工具。

这个知识点在面试中也很频繁的出现。尽管理解这些概念本身不难,但许多人在复习时容易混淆,或在面试紧张时忘记,影响回答效果。

本篇文章将会从基础概念入手,逐步深入到实际操作。我们会详细解释 ROC 曲线和 AUC 的定义和意义,通过实例和代码示范帮助大侠掌握这些工具的使用方法,最后通过一些实际应用案例和相关概念的对比,力求全面理解并灵活运用 ROC 和 AUC。

1. 基础概念介绍

1.1 什么是 ROC 曲线

ROC 曲线,即接收者操作特征曲线,ROC曲线产生于第二次世界大战期间,最早用在信号检测领域,侦测战场上的敌军载具(飞机、船舰)。现在是是用来评价二分类模型性能的常用图形工具。它通过显示真阳性率(True Positive Rate,简称 TPR)与假阳性率(False Positive Rate,简称 FPR)之间的权衡来帮助我们理解模型的分类能力。

1.2 什么是 AUC

AUC,即曲线下面积(Area Under Curve),是 ROC 曲线下面积的一个数值表示。它提供了一个定量的指标,用来衡量分类模型的整体表现。AUC 值范围从 0 到 1,值越大表示模型性能越好。

1.3 为何需要 ROC/AUC

在分类任务中,特别是当数据集类别不平衡时,单纯依赖准确率(Accuracy)可能会造成误导。为了更好地理解这一点,让我们通过一个例子来说明。

例子说明

假设我们有一个武侠元素的数据集,其中 95% 的样本是普通弟子,5% 的样本是高手。

让我们通过代码示例来演示这一点(代码供复现使用,可直接跳过下滑到解释部分):

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_curve, roc_auc_score, accuracy_score, confusion_matrix

# 生成一个极度不平衡的武侠数据集
# 假设特征表示武功修炼时间、战斗胜率等,标签表示是否为高手
X, y = make_classification(n_samples=1000, n_features=20, n_classes=2, weights=[0.95, 0.05], random_state=42)

# 将数据集分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 创建一个总是预测普通弟子的模型
class AlwaysNegativeModel:
    def predict(self, X):
        return np.zeros(X.shape[0])

# 训练和预测
model = AlwaysNegativeModel()
y_pred = model.predict(X_test)

# 计算混淆矩阵和准确率
cm = confusion_matrix(y_test, y_pred)
accuracy = accuracy_score(y_test, y_pred)

# 计算 ROC 曲线和 AUC
# 在这里我们需要一个概率预测来计算 ROC 曲线和 AUC,为了演示,我们假设模型输出的是一个常量概率
y_pred_prob = np.zeros(X_test.shape[0])
fpr, tpr, thresholds = roc_curve(y_test, y_pred_prob)
auc = roc_auc_score(y_test, y_pred_prob)

# 可视化结果
plt.figure(figsize=(10, 5))

plt.subplot(1, 2, 1)
plt.title("混淆矩阵")
plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues)
plt.colorbar()
plt.xlabel("预测标签")
plt.ylabel("真实标签")
plt.xticks([0, 1], ["普通弟子", "高手"])
plt.yticks([0, 1], ["普通弟子", "高手"])
for i in range(2):
    for j in range(2):
        plt.text(j, i, cm[i, j], ha="center", va="center", color="red")


print(f"准确率: {accuracy:.2f}")
print(f"AUC: {auc:.2f}")

结果分析

如果我们使用一个简单的分类器,它总是预测所有样本为普通弟子。

这个模型的准确率为 95%,看起来表现很好,但实际上它根本无法识别高手,是一个毫无用处的分类器。

这个分类器没有任何实际的分类能力,因为它无法识别出真正的高手。

  • ROC 曲线和 AUC:通过绘制 ROC 曲线并计算 AUC,我们可以看到 AUC 为 0.50,这表明模型没有任何区分能力。ROC 曲线是一条对角线,显示模型在随机猜测。

准确率只告诉我们模型整体预测正确的比例,但在类别不平衡的情况下,这个指标可能会误导我们。ROC 曲线和 AUC 提供了更全面的视角,展示了模型在不同阈值下的性能,帮助我们更准确地评估模型的分类能力。

更多内容,见免费知识星球

2. 详细解释

2.1 TPR(True Positive Rate)和 FPR(False Positive Rate)的定义

要理解 ROC 曲线,首先需要明白 TPR 和 FPR 的概念:

  • TPR(True Positive Rate):也称为灵敏度(Sensitivity)或召回率(Recall),表示的是在所有真实为正的样本中,被正确预测为正的比例。其计算公式为:

其中,TP(True Positives)是将正类正确分类为正类的样本数,FN(False Negatives)是将正类错误分类为负类的样本数。

  • FPR(False Positive Rate):表示的是在所有真实为负的样本中,被错误预测为正的比例。其计算公式为:

其中,FP(False Positives)是将负类错误分类为正类的样本数,TN(True Negatives)是将负类正确分类为负类的样本数。

2.2 AUC 的数学定义

AUC(Area Under Curve)是 ROC 曲线下的面积,用于评估分类模型的性能。AUC 值的范围从 0 到 1,值越大表示模型的性能越好。

数学上,AUC 可以通过积分计算:

在离散情况下,AUC 可以通过梯形法则近似计算:

3 绘制 ROC 曲线的步骤

绘制 ROC 曲线的步骤如下:

  1. 选择阈值:从 0 到 1 的不同阈值。
  2. 计算 TPR 和 FPR:对于每个阈值,计算相应的 TPR 和 FPR。
  3. 绘制曲线:以 FPR 为横轴,TPR 为纵轴,绘制 ROC 曲线。

选择阈值:从 0 到 1 的不同阈值

from sklearn.metrics import roc_curve

# 预测测试集概率
y_pred_prob = model.predict_proba(X_test)[:, 1]

# 计算 ROC 曲线
fpr, tpr, thresholds = roc_curve(y_test, y_pred_prob)

# 输出部分阈值
print("阈值: ", thresholds[:10])  # 仅展示前10个阈值

计算 TPR 和 FPR:对于每个阈值,计算相应的 TPR 和 FPR

# 输出部分阈值对应的 TPR 和 FPR
for i in range(10):  # 仅展示前10个阈值的对应值
    print(f"阈值: {thresholds[i]:.2f} -> 假阳性率 (FPR): {fpr[i]:.2f}, 真阳性率 (TPR): {tpr[i]:.2f}")

绘制曲线:以 FPR 为横轴,TPR 为纵轴,绘制 ROC 曲线

import matplotlib.pyplot as plt

# 可视化 ROC 曲线
plt.figure(figsize=(8, 6))
plt.plot(fpr, tpr, color='blue', lw=2, label='ROC 曲线')
plt.plot([0, 1], [0, 1], color='gray', lw=1, linestyle='--', label='随机猜测')
plt.xlabel("假阳性率 (FPR)")
plt.ylabel("真阳性率 (TPR)")
plt.title("ROC 曲线")
plt.legend(loc="lower right")

# 在曲线上标出几个阈值点
threshold_points = [0.2, 0.5, 0.8]
for threshold in threshold_points:
    idx = np.where(thresholds >= threshold)[0][0]
    plt.scatter(fpr[idx], tpr[idx], marker='o', color='red')
    plt.text(fpr[idx], tpr[idx], f"阈值={threshold:.2f}", fontsize=12)

plt.show()

4 AUC 的意义

AUC 值越大,模型的性能越好。具体来说:

  • AUC = 0.5 表示模型没有分类能力,相当于随机猜测。
  • 0.5 < AUC < 0.7 表示模型有一定的分类能力,但效果一般。
  • 0.7 ≤ AUC < 0.9 表示模型有较好的分类能力。
  • AUC ≥ 0.9 表示模型有非常好的分类能力。

AUC 的优缺点

优点:

  • 阈值无关:AUC 衡量的是模型在所有可能的分类阈值下的表现,因此不受单一阈值的影响。
  • 综合性能评估:AUC 综合了 TPR 和 FPR 的信息,能够全面评估模型的性能。

缺点:

  • 可能不适用于极度不平衡的数据:在极度不平衡的数据集上,AUC 可能无法准确反映模型的性能,需要结合其他评估指标使用。
  • 解释复杂:对于非专业人士来说,AUC 的解释和理解可能比较困难。

代码示例

下面我们通过代码示例来计算 AUC 并解释其意义:

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import roc_curve, roc_auc_score, accuracy_score, confusion_matrix

# 生成一个不平衡的武侠数据集
# 假设特征表示武功修炼时间、战斗胜率等,标签表示是否为高手
X, y = make_classification(n_samples=1000, n_features=20, n_classes=2, weights=[0.9, 0.1], random_state=42)

# 将数据集分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 训练一个逻辑回归模型
model = LogisticRegression()
model.fit(X_train, y_train)

# 预测测试集
y_pred_prob = model.predict_proba(X_test)[:, 1]

# 计算 ROC 曲线和 AUC
fpr, tpr, thresholds = roc_curve(y_test, y_pred_prob)
auc = roc_auc_score(y_test, y_pred_prob)

# 可视化结果
plt.figure(figsize=(10, 5))

plt.subplot(1, 2, 1)
plt.title("ROC 曲线")
plt.plot(fpr, tpr, color='blue', lw=2, label=f"AUC = {auc:.2f}")
plt.plot([0, 1], [0, 1], color='gray', lw=1, linestyle='--')
plt.xlabel("假阳性率")
plt.ylabel("真阳性率")
plt.legend(loc="lower right")

plt.subplot(1, 2, 2)
plt.title("AUC 值示意")
plt.fill_between(fpr, tpr, color='blue', alpha=0.3)
plt.plot(fpr, tpr, color='blue', lw=2, label=f"AUC = {auc:.2f}")
plt.xlabel("假阳性率")
plt.ylabel("真阳性率")
plt.legend(loc="lower right")

plt.tight_layout()
plt.show()

print(f"AUC: {auc:.2f}")

ROC 曲线图

  • 横轴(假阳性率,FPR):表示负类样本中被错误分类为正类的比例。
  • 纵轴(真阳性率,TPR):表示正类样本中被正确分类为正类的比例。
  • 蓝色曲线:展示了模型在不同阈值下的 FPR 和 TPR 之间的关系。
  • 灰色虚线:表示一个随机猜测模型的表现,其 AUC 值为 0.5。
  • AUC 值:图中显示的 AUC 值(在图例中标注),越接近 1 说明模型的分类性能越好。

AUC 值示意图

  • 蓝色区域:ROC 曲线下的面积,即 AUC 值。这个面积越大,说明模型的分类性能越好。
  • AUC 值标注:同样在图例中标注了 AUC 值。

通过这两个图,可以直观地看到模型在不同阈值下的分类性能,以及通过 AUC 值来量化这种性能。

5. 实际应用案例

为了让大侠更好地理解 ROC 和 AUC 在实际中的应用,我们将展示它们在不同领域中的应用,如医学诊断和金融风险评估,并通过实际案例进行代码实现。

5.1 在不同领域中的应用

医学诊断

在医学诊断中,ROC 曲线和 AUC 被广泛用于评估诊断测试的性能。例如,在筛查癌症时,医生希望测试能够正确识别出患病和未患病的患者。ROC 曲线可以帮助医生选择最佳的阈值,从而最大化检测的准确性。

金融风险评估

在金融领域,ROC 和 AUC 被用于评估信用评分模型的性能。例如,银行希望识别高风险借款人,以降低贷款违约率。ROC 曲线可以帮助银行选择适当的阈值,以平衡风险和收益。

5.2 实际案例分析及代码实现

我们将使用一个模拟的医学诊断数据集来演示如何应用 ROC 和 AUC。假设我们有一个数据集,包含患者的各种特征以及他们是否患有某种疾病。

代码示例和结果分析

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import roc_curve, roc_auc_score, accuracy_score, confusion_matrix

# 加载乳腺癌数据集
data = load_breast_cancer()
X = data.data
y = data.target

# 将数据集分为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 训练一个逻辑回归模型
model = LogisticRegression(max_iter=10000)
model.fit(X_train, y_train)

# 预测测试集
y_pred = model.predict(X_test)
y_pred_prob = model.predict_proba(X_test)[:, 1]

# 计算混淆矩阵和准确率
cm = confusion_matrix(y_test, y_pred)
accuracy = accuracy_score(y_test, y_pred)

# 计算 ROC 曲线和 AUC
fpr, tpr, thresholds = roc_curve(y_test, y_pred_prob)
auc = roc_auc_score(y_test, y_pred_prob)

# 可视化结果
plt.figure(figsize=(10, 5))

plt.subplot(1, 2, 1)
plt.title("混淆矩阵")
plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues)
plt.colorbar()
plt.xlabel("预测标签")
plt.ylabel("真实标签")
plt.xticks([0, 1], ["未患病", "患病"])
plt.yticks([0, 1], ["未患病", "患病"])
for i in range(2):
    for j in range(2):
        plt.text(j, i, cm[i, j], ha="center", va="center", color="red")

plt.subplot(1, 2, 2)
plt.title("ROC 曲线")
plt.plot(fpr, tpr, color='blue', lw=2, label=f"AUC = {auc:.2f}")
plt.plot([0, 1], [0, 1], color='gray', lw=1, linestyle='--', label='随机猜测')
plt.xlabel("假阳性率")
plt.ylabel("真阳性率")
plt.legend(loc="lower right")

plt.tight_layout()
plt.show()

print(f"准确率: {accuracy:.2f}")
print(f"AUC: {auc:.2f}")

结果分析

  • 准确率:模型的准确率(Accuracy)为 0.98,这意味着在所有测试样本中,有 98% 的样本被正确分类。
  • AUC 值:AUC 值为 0.998,这意味着模型在区分未患病和患病患者方面表现非常完美。AUC = 0.998 表示模型在所有可能的阈值下都能完全区分正类和负类样本,这是一种理想状态。

解释

  • 准确率为 0.98:在大多数情况下,这是一个很高的准确率,表明模型几乎所有的预测都是正确的。
  • AUC = 0.998:表示模型在所有可能的阈值下都能完全区分未患病和患病患者,展示了模型极高的区分能力。

6. 相关概念的对照和对比

在这部分内容中,我们将对 ROC/AUC 与其他评估指标进行对照和对比,以便大侠更全面地理解这些指标在模型评估中的作用。

6.1 ROC/AUC 与混淆矩阵

混淆矩阵是一种用来评价分类模型性能的工具,它通过展示真阳性(TP)、假阳性(FP)、真阴性(TN)和假阴性(FN)的数量来评估模型。ROC 曲线和 AUC 则是从不同的阈值下综合评估模型的性能。

示例代码:

from sklearn.metrics import confusion_matrix, accuracy_score

# 预测测试集
y_pred = model.predict(X_test)
y_pred_prob = model.predict_proba(X_test)[:, 1]

# 计算混淆矩阵
cm = confusion_matrix(y_test, y_pred)
accuracy = accuracy_score(y_test, y_pred)

# 输出混淆矩阵和准确率
print("混淆矩阵:")
print(cm)

6.2 ROC/AUC 与 PR 曲线

PR 曲线(Precision-Recall Curve)是另一种评估二分类模型的方法,特别适用于不平衡数据集。它通过展示查准率(Precision)和召回率(Recall)之间的关系来评估模型性能。

  • 查准率(Precision):表示在所有被预测为正类的样本中,实际为正类的比例。
  • 召回率(Recall):表示在所有实际为正类的样本中,被正确预测为正类的比例。

示例代码:

from sklearn.metrics import precision_recall_curve

# 计算 PR 曲线
precision, recall, _ = precision_recall_curve(y_test, y_pred_prob)

# 可视化 PR 曲线
plt.figure()
plt.plot(recall, precision, color='blue', lw=2, label='PR 曲线')
plt.xlabel("召回率")
plt.ylabel("查准率")
plt.title("PR 曲线")
plt.legend(loc="lower left")
plt.show()

6.3 其他评估指标(如 Precision、Recall)与 ROC/AUC 的关系

除了 ROC/AUC 和 PR 曲线,其他常用的评估指标还有:

  • 准确率(Accuracy):表示被正确分类的样本占总样本的比例。
  • 查准率(Precision):表示在所有被预测为正类的样本中,实际为正类的比例。
  • 召回率(Recall):表示在所有实际为正类的样本中,被正确预测为正类的比例。
  • F1 分数(F1 Score):查准率和召回率的调和平均数,用于综合评价模型的精确性和召回率。

示例代码:

from sklearn.metrics import precision_score, recall_score, f1_score

# 计算查准率、召回率和 F1 分数
precision = precision_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred)

# 输出结果
print(f"查准率: {precision:.2f}")
print(f"召回率: {recall:.2f}")
print(f"F1 分数: {f1:.2f}")

7. 误区和注意事项

在使用 ROC 和 AUC 评估分类模型性能时,大侠需要注意一些常见的误区和使用注意事项,以便准确地理解和应用这些指标。

7.1 常见误区

误区一:高准确率等于高性能

高准确率并不一定意味着模型性能优秀,尤其是在类别不平衡的情况下。正如前文所示,即使一个模型总是预测为大多数类,其准确率也可能很高,但其实际分类能力可能非常差。

误区二:AUC 值越高越好

虽然 AUC 值高表示模型性能好,但在某些应用场景下,其他指标如查准率(Precision)和召回率(Recall)可能更加重要。例如,在医疗诊断中,召回率(即灵敏度)通常比 AUC 更加关键,因为漏诊的代价非常高。

误区三:单一指标评价模型

依赖单一指标评价模型性能是不全面的。最好结合多个指标(如 AUC、准确率、查准率、召回率和 F1 分数)来综合评估模型的性能。

7.2 使用 ROC/AUC 时的注意事项

注意事项一:数据不平衡问题

在处理类别不平衡的数据集时,AUC 和 ROC 曲线可以提供更全面的评估,但仍需要结合 PR 曲线等其他指标进行综合分析。

注意事项二:选择合适的阈值

ROC 曲线展示了模型在不同阈值下的性能表现,需要根据具体应用场景选择合适的阈值。例如,在金融风险评估中,选择较低的阈值可能会增加风险,但可以减少漏检。

注意事项三:模型的校准

确保模型的概率输出是校准的,即输出的概率与实际发生的概率一致。模型校准可以通过可靠性图(Calibration Curve)等方法进行评估和调整。

[ 抱个拳,总个结 ]

经过前面的详细讲解,我们已经全面了解了 ROC 曲线和 AUC 的概念、计算方法、代码实现以及在不同领域中的应用。下面对文章的核心内容进行简要回顾:

核心要点回顾

  1. 基础概念:ROC 曲线是用来评价二分类模型性能的工具,通过显示真阳性率(TPR)和假阳性率(FPR)之间的权衡来帮助我们理解模型的分类能力。AUC(曲线下面积)是 ROC 曲线下的面积,用于量化模型的整体表现。
  2. 详细解释:我们详细解释了 TPR 和 FPR 的定义,绘制 ROC 曲线的步骤,并通过实例代码演示了如何计算和绘制 ROC 曲线以及 AUC。还对 AUC 的数学定义、意义及其优缺点进行了分析。
  3. 代码示范:通过使用 Python 和 scikit-learn 库,我们实现了如何计算和绘制 ROC 曲线及 AUC,并通过实例展示了这些指标在实际应用中的效果。
  4. 实际应用案例:我们使用乳腺癌数据集进行模型训练和评估,展示了 ROC 和 AUC 在医学诊断中的实际应用,并通过代码详细演示了如何计算和解释这些指标。
  5. 相关概念对照和对比:我们对 ROC/AUC 与混淆矩阵、PR 曲线等其他评估指标进行了对照和对比,帮助全面理解这些指标的作用,并根据具体应用场景选择合适的评估方法。
  6. 误区和注意事项:我们讨论了在使用 ROC 和 AUC 时常见的误区和需要注意的事项,提醒大侠避免在模型评估中常见的错误,并提供了结合多种评估指标综合分析模型性能的方法。

关键概念回顾

  • ROC 曲线:评估模型在不同阈值下的性能,通过展示 TPR 和 FPR 的关系来帮助理解模型的分类能力。
  • AUC:量化 ROC 曲线下的面积,用于综合评价模型的整体表现,AUC 值越大表示模型性能越好。
  • 混淆矩阵:展示模型的分类结果,通过四个基本要素(TP、FP、TN、FN)来评估模型性能。
  • PR 曲线:展示查准率和召回率之间的关系,特别适用于类别不平衡的数据集。
  • 校准曲线:评估模型的概率输出是否与实际概率一致,确保模型的概率预测是准确的。

通过这篇文章的讲解,希望大侠们能够更加全面地理解和应用 ROC 曲线和 AUC,在实际项目中灵活运用这些知识,提升模型评估的准确性和可靠性。

- 科研为国分忧,创新与民造福 -

日更时间紧任务急,难免有疏漏之处,还请大侠海涵 内容仅供学习交流之用,部分素材来自网络,侵联删

[ 算法金,碎碎念 ]

全网同名,日更万日,让更多人享受智能乐趣

如果觉得内容有价值,烦请大侠多多 分享、在看、点赞,助力算法金又猛又持久、很黄很 BL 的日更下去;

同时邀请大侠 关注、星标 算法金,围观日更万日,助你功力大增、笑傲江湖

目录
相关文章
|
5天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
21 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
|
26天前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
1月前
|
机器学习/深度学习 数据挖掘 Serverless
手把手教你全面评估机器学习模型性能:从选择正确评价指标到使用Python与Scikit-learn进行实战演练的详细指南
【10月更文挑战第10天】评估机器学习模型性能是开发流程的关键,涉及准确性、可解释性、运行速度等多方面考量。不同任务(如分类、回归)采用不同评价指标,如准确率、F1分数、MSE等。示例代码展示了使用Scikit-learn库评估逻辑回归模型的过程,包括数据准备、模型训练、性能评估及交叉验证。
62 1
|
1月前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
55 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
1月前
|
机器学习/深度学习 算法 Python
探索机器学习中的决策树算法:从理论到实践
【10月更文挑战第5天】本文旨在通过浅显易懂的语言,带领读者了解并实现一个基础的决策树模型。我们将从决策树的基本概念出发,逐步深入其构建过程,包括特征选择、树的生成与剪枝等关键技术点,并以一个简单的例子演示如何用Python代码实现一个决策树分类器。文章不仅注重理论阐述,更侧重于实际操作,以期帮助初学者快速入门并在真实数据上应用这一算法。
|
14天前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的决策树算法
【10月更文挑战第29天】本文将深入浅出地介绍决策树算法,一种在机器学习中广泛使用的分类和回归方法。我们将从基础概念出发,逐步深入到算法的实际应用,最后通过一个代码示例来直观展示如何利用决策树解决实际问题。无论你是机器学习的初学者还是希望深化理解的开发者,这篇文章都将为你提供有价值的见解和指导。
|
1月前
|
JSON 算法 数据可视化
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
这篇文章是关于如何通过算法接口返回的目标检测结果来计算性能指标的笔记。它涵盖了任务描述、指标分析(包括TP、FP、FN、TN、精准率和召回率),接口处理,数据集处理,以及如何使用实用工具进行文件操作和数据可视化。文章还提供了一些Python代码示例,用于处理图像文件、转换数据格式以及计算目标检测的性能指标。
59 0
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
|
1月前
|
机器学习/深度学习 算法 数据处理
EM算法对人脸数据降维(机器学习作业06)
本文介绍了使用EM算法对人脸数据进行降维的机器学习作业。首先通过加载ORL人脸数据库,然后分别应用SVD_PCA、MLE_PCA及EM_PCA三种方法实现数据降维,并输出降维后的数据形状。此作业展示了不同PCA变种在人脸数据处理中的应用效果。
33 0
|
1月前
|
机器学习/深度学习 算法 决策智能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能

热门文章

最新文章