m基于FPGA的FIR低通滤波器实现和FPGA频谱分析,包含testbench和滤波器系数MATLAB计算程序

简介: 在Vivado 2019.2平台上开发的系统,展示了数字低通滤波器和频谱分析的FPGA实现。仿真结果显示滤波效果良好,与MATLAB仿真结果一致。设计基于FPGA的FIR滤波器,利用并行处理和流水线技术提高效率。频谱分析通过离散傅里叶变换实现。提供了Verilog核心程序以示例模块工作原理。

1.算法仿真效果
本系统进行了Vivado2019.2平台的开发,Vivado2019.2仿真结果如下:

整体仿真结果如下:

d68b7af5de2e45e7e25790d4ec7a46c9_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

放大看,滤波效果如下:

bd6327e6b4b5f83d2c587afd67f5e5f0_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

对应的频谱如下:
2a3734e0027c556d7a4b98166e1157d8_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

FPGA的RTL结构如下:

7184ead18957cbe890acb0f0e36f5740_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

最后用matlab对比仿真,结果如下:

3e441e92d90b807313f51c5c5301b588_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg
4ef7d9fad8d5ae7f1b1ad2f229ebfe6f_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

可以看到,FPGA的滤波效果和频谱分析与matlab的结果一致。

2.算法涉及理论知识概要
基于FPGA(Field-Programmable Gate Array,现场可编程门阵列)的数字低通滤波器实现和FPGA频谱分析是数字信号处理领域的重要应用,广泛应用于通信、音频处理、图像处理等多个行业。数字低通滤波器旨在允许低频信号通过而衰减高频信号,是信号处理中基础且重要的组件之一。其设计通常基于时域采样定理和滤波器设计理论,常见的实现方法有IIR(无限脉冲响应)滤波器和FIR(有限脉冲响应)滤波器。

b24d59579f29c43528f4e4f3876544ee_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   在FPGA上实现FIR滤波器,主要通过配置硬件逻辑资源(如查找表LUTs、触发器等)来实现上述卷积运算。具体步骤包括:

系数存储:滤波器系数h[k]被存储在FPGA的块RAM中。
并行处理:利用FPGA的并行处理能力,将输入信号序列分块处理,每一块与滤波器系数进行并行卷积。
流水线设计:为了提高处理速度,设计中通常采用流水线技术,即每个运算步骤在不同的时钟周期完成,从而实现连续数据流处理。
频谱分析是将信号从时域转换到频域,以观察其频率组成的技术。在FPGA上实现频谱分析,最常见的方式是使用离散傅里叶变换(DFT)或其快速版本——快速傅里叶变换(FFT)。

4883fb81cc8dcddb2faa0c25c54e78e7_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.Verilog核心程序
````timescale 1ns / 1ps
//
// Company:
// Engineer:
//
// Create Date: 2024/05/27 21:38:45
// Design Name:
// Module Name: test
// Project Name:
// Target Devices:
// Tool Versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
//

module test();

reg i_clk;
reg i_rst;
wire signed[15:0]o_x;
wire signed[15:0]o_y;
reg i_before_fft1;
reg i_last_fft1;
reg i_enable1;
wire o_enable1;
wire o_enable2;
wire signed[63:0]o_abs_ifft1;
wire signed[63:0]o_abs_ifft2;

tops tops_U(
.i_clk (i_clk),
.i_rst (i_rst),
.o_x (o_x),
.o_y (o_y),
.i_before_fft1 (i_before_fft1),
.i_last_fft1 (i_last_fft1),
.i_enable1 (i_enable1),
.o_enable1 (o_enable1),
.o_enable2 (o_enable2),
.o_abs_ifft1 (o_abs_ifft1),
.o_abs_ifft2 (o_abs_ifft2)
);

initial
begin
i_clk=1'b1;
i_rst=1'b1;

100

i_rst = 1'b0;
end
always #5 i_clk=~i_clk;
reg [19:0]cnts2;
always @(posedge i_clk or posedge i_rst)
begin
if(i_rst)
begin
cnts2 <= 20'd0;
i_before_fft1<=1'b0;
i_enable1 <=1'b0;
i_last_fft1 <=1'b0;
end
else begin
if(cnts2==20'd25000)
cnts2 <= cnts2;
else
cnts2 <= cnts2 + 20'd1;
if(cnts2==20'd0)
begin
i_before_fft1<=1'b1;
i_enable1 <=1'b0;
i_last_fft1 <=1'b0;
end
if(cnts2==20'd1)
begin
i_before_fft1<=1'b1;
i_enable1 <=1'b0;
i_last_fft1 <=1'b0;
end
if(cnts2==20'd2)
begin
i_before_fft1<=1'b1;
i_enable1 <=1'b0;
i_last_fft1 <=1'b0;
end
if(cnts2==20'd3)
begin
i_before_fft1<=1'b1;
i_enable1 <=1'b0;
i_last_fft1 <=1'b0;
end

      if(cnts2==20'd4)
      begin
         i_before_fft1<=1'b0;
         i_enable1    <=1'b0;
         i_last_fft1  <=1'b0;
      end
      if(cnts2>=20'd5 & cnts2<=20'd4+2047)
      begin
         i_before_fft1<=1'b0;
         i_enable1    <=1'b1;
         i_last_fft1  <=1'b0;
      end

      if(cnts2==20'd4+2048)
      begin
         i_before_fft1<=1'b0;
         i_enable1    <=1'b1;
         i_last_fft1  <=1'b1;
      end

      if(cnts2>20'd4+2048)
      begin
         i_before_fft1<=1'b0;
         i_enable1    <=1'b0;
         i_last_fft1  <=1'b0;
      end



 end

end

endmodule
00_065m
```

相关文章
|
15天前
|
Python
【Python】实现MATLAB中计算两个矩形相交面积的rectint函数
Python中实现MATLAB中rectint函数的方法,该函数用于计算两个矩形相交区域的面积,并通过定义Rectangle类和calc_area函数展示了如何计算两个矩形的交集面积。
11 1
|
26天前
|
安全 C++
基于MATLAB的电力线路参数计算仿真
*1. 课题概述** - 电力线路分为输电与配电,计算关键参数至关重要 - 本项目开发基于MATLAB的软件,用于计算电力线路的重要参数 *2. 系统仿真结果** - 实现了工频电场、电力系统潮流等参数的计算。 - 包括MATLAB界面设计与计算功能实现。 *3. 系统原理简介** - **额定电压**: 设备最佳工作电压,保障性能稳定及延长使用寿命。 - **输变电设施**: 运行时产生工频电场和磁场,需符合国家标准限值。 - **线径计算**: 依据电流密度和趋肤效应确定导线截面积。 - **电力系统潮流计算**: 基于牛顿-拉夫逊法求解电力系统稳态运行状态,用于检查系统过负荷及电压质量。
|
6天前
|
机器人
MATLAB - 计算机械臂关节扭矩以平衡末端力和力矩
MATLAB - 计算机械臂关节扭矩以平衡末端力和力矩
4 0
|
1月前
|
监控
基于偏微分方程离散化计算的地下换热器建模与温度检测matlab仿真
**摘要:** 探索地下换热器的建模与温度检测,使用MATLAB2022a进行系统仿真,关注传热过程的热传导、对流和辐射。通过离散化偏微分方程建立数值模型,模拟温度场,考虑地质特性和水流影响。建模以网格单元描述温度变化,采用热电偶、红外和光纤测温技术验证模型并监控温度,各具优缺点。光纤测温法提供高精度和抗干扰的分布式监测。
|
2月前
|
算法 计算机视觉 异构计算
基于FPGA的图像一维FFT变换IFFT逆变换verilog实现,包含tb测试文件和MATLAB辅助验证
```markdown ## FPGA 仿真与 MATLAB 显示 - 图像处理的 FFT/IFFT FPGA 实现在 Vivado 2019.2 中仿真,结果通过 MATLAB 2022a 展示 - 核心代码片段:`Ddddddddddddddd` - 理论:FPGA 实现的一维 FFT/IFFT,加速数字信号处理,适用于高计算需求的图像应用,如压缩、滤波和识别 ```
|
3月前
|
机器学习/深度学习 算法 异构计算
m基于FPGA的多通道FIR滤波器verilog实现,包含testbench测试文件
本文介绍了使用VIVADO 2019.2仿真的多通道FIR滤波器设计。展示了系统RTL结构图,并简述了FIR滤波器的基本理论,包括单通道和多通道的概念、常见结构及设计方法,如窗函数法、频率采样法、优化算法和机器学习方法。此外,还提供了Verilog核心程序代码,用于实现4通道滤波器模块,包含时钟、复位信号及输入输出接口的定义。
111 7
|
3月前
|
算法 异构计算
m基于FPGA的电子钟verilog实现,可设置闹钟,包含testbench测试文件
该文介绍了基于FPGA的电子钟设计,利用Vivado2019.2平台进行开发并展示测试结果。电子钟设计采用Verilog硬件描述语言,核心包括振荡器、分频器和计数器。时间显示为2个十进制格式,闹钟功能通过存储器和比较器实现,当当前时间等于设定时间时触发。文中给出了Verilog核心程序示例,展示了时钟信号、设置信号及输出的交互。
140 2
|
3月前
|
编解码 算法 异构计算
基于FPGA的NC图像质量评估verilog实现,包含testbench和MATLAB辅助验证程序
在Vivado 2019.2和Matlab 2022a中测试的图像质量评估算法展示了效果。该算法基于NC指标,衡量图像与原始图像的相似度,关注分辨率、色彩深度和失真。提供的Verilog代码段用于读取并比较两个BMP文件,计算NC值。
|
3月前
|
算法 异构计算
m基于FPGA的MPPT最大功率跟踪算法verilog实现,包含testbench
该内容包括三部分:1) 展示了Vivado 2019.2和Matlab中关于某种算法的仿真结果图像,可能与太阳能光伏系统的最大功率点跟踪(MPPT)相关。2) 简述了MPPT中的爬山法原理,通过调整光伏电池工作点以找到最大功率输出。3) 提供了一个Verilog程序模块`MPPT_test_tops`,用于测试MPPT算法,其中包含`UI_test`和`MPPT_module_U`两个子模块,处理光伏电流和电压信号。
39 1
|
1月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的MSK调制解调系统verilog开发,包含testbench,同步模块,高斯信道模拟模块,误码率统计模块
升级版FPGA MSK调制解调系统集成AWGN信道模型,支持在Vivado 2019.2中设置不同SNR仿真误码率。示例SNR值从0到15,结果展示解调质量随SNR提升。MATLAB仿真验证了MSK性能,图片显示了仿真结果。 ### 理论概要 研究聚焦于软件无线电中的MSK调制解调,利用Verilog实现。MSK是一种相位连续、恒包络的二进制调制技术,优点包括频谱效率高。系统采用无核设计,关键模块包括调制器、解调器和误码检测。复位、输入数据、中频信号等关键信号通过Verilog描述,并通过Chipscope在线观察。
33 6
基于FPGA的MSK调制解调系统verilog开发,包含testbench,同步模块,高斯信道模拟模块,误码率统计模块

热门文章

最新文章