使用k-近邻算法改进约会网站的配对效果(kNN)

简介: 使用k-近邻算法改进约会网站的配对效果(kNN)

谷歌笔记本(可选)


from google.colab import drive
drive.mount("/content/drive")
Mounted at /content/drive

准备数据:从文本文件中解析数据


def file2matrix(filename):
  fr = open(filename)
  arrayOfLines = fr.readlines()
  numberOfLines = len(arrayOfLines)
  returnMat = zeros((numberOfLines, 3))
  classLabelVector = []
  index = 0
  for line in arrayOfLines:
    line = line.strip()
    listFromLine = line.split('\t')
    returnMat[index, :] = listFromLine[0:3]
    classLabelVector.append(int(listFromLine[-1]))
    index += 1
  return returnMat, classLabelVector
datingDataMat, datingLabels = file2matrix('/content/drive/MyDrive/MachineLearning/机器学习/k-近邻算法/使用k-近邻算法改进约会网站的配对效果/datingTestSet2.txt')
datingDataMat
array([[4.0920000e+04, 8.3269760e+00, 9.5395200e-01], [1.4488000e+04, 7.1534690e+00, 1.6739040e+00], [2.6052000e+04, 1.4418710e+00, 8.0512400e-01], ..., [2.6575000e+04, 1.0650102e+01, 8.6662700e-01], [4.8111000e+04, 9.1345280e+00, 7.2804500e-01], [4.3757000e+04, 7.8826010e+00, 1.3324460e+00]])
datingLabels[:10]

[3, 2, 1, 1, 1, 1, 3, 3, 1, 3]


编写算法:编写kNN算法


from numpy import *
import operator
 
def classify0(inX, dataSet, labels, k):
  dataSetSize = dataSet.shape[0]
  diffMat = tile(inX, (dataSetSize, 1)) - dataSet
  sqDiffMat = diffMat ** 2
  sqDistances = sqDiffMat.sum(axis=1)
  distances = sqDistances**0.5
  sortedDistIndicies = distances.argsort()
  classCount = {}
  for i in range(k):
    voteIlabel = labels[sortedDistIndicies[i]]
    classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1
  sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True)
  return sortedClassCount[0][0]

分析数据:使用Matplotlib创建散点图


import matplotlib
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(datingDataMat[:, 1], datingDataMat[:, 2])
plt.show()

import matplotlib
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(datingDataMat[:, 1], datingDataMat[:, 2],
           15.0*array(datingLabels), 15.0*array(datingLabels))
plt.show()

import matplotlib
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(datingDataMat[:, 0], datingDataMat[:, 1],
           15.0*array(datingLabels), 15.0*array(datingLabels))
plt.show()


准备数据:归一化数值


def autoNorm(dataSet):
  minVals = dataSet.min(0)
  maxVals = dataSet.max(0)
  ranges = maxVals - minVals
  normDataSet = zeros(shape(dataSet))
  m = dataSet.shape[0]
  normDataSet = dataSet - tile(minVals, (m,1))
  normDataSet = normDataSet/tile(ranges, (m,1))
  return normDataSet, ranges, minVals
normMat, ranges, minVals = autoNorm(datingDataMat)
normMat
array([[0.44832535, 0.39805139, 0.56233353],
       [0.15873259, 0.34195467, 0.98724416],
       [0.28542943, 0.06892523, 0.47449629],
       ...,
       [0.29115949, 0.50910294, 0.51079493],
       [0.52711097, 0.43665451, 0.4290048 ],
       [0.47940793, 0.3768091 , 0.78571804]])
ranges
array([9.1273000e+04, 2.0919349e+01, 1.6943610e+00])
minVals
array([0.      , 0.      , 0.001156])

测试算法:作为完整程序验证分类器


def datingClassTest():
  hoRatio = 0.1
  datingDataMat, datingLabels = file2matrix('/content/drive/MyDrive/MachineLearning/机器学习/k-近邻算法/使用k-近邻算法改进约会网站的配对效果/datingTestSet2.txt')
  normMat, ranges, minVals = autoNorm(datingDataMat)
  m = normMat.shape[0]
  numTestVecs = int(m*hoRatio)
  errorCount = 0
  for i in range(numTestVecs):
    classifierResult = classify0(normMat[i,:], normMat[numTestVecs:m,:],
                                 datingLabels[numTestVecs:m],3)
    print("the classifierResult came back with: %d,\
    the real answer is: %d" % (classifierResult, datingLabels[i]))
    if (classifierResult != datingLabels[i]):
      errorCount += 1
  print("the total error rate is: %f" % (errorCount/float(numTestVecs)))
datingClassTest()
the classifierResult came back with: 3,    the real answer is: 3
the classifierResult came back with: 2,    the real answer is: 2
the classifierResult came back with: 1,    the real answer is: 1
the classifierResult came back with: 1,    the real answer is: 1
the classifierResult came back with: 1,    the real answer is: 1
the classifierResult came back with: 1,    the real answer is: 1
the classifierResult came back with: 3,    the real answer is: 3
the classifierResult came back with: 3,    the real answer is: 3
the classifierResult came back with: 1,    the real answer is: 1
the classifierResult came back with: 3,    the real answer is: 3
the classifierResult came back with: 1,    the real answer is: 1
the classifierResult came back with: 1,    the real answer is: 1
the classifierResult came back with: 2,    the real answer is: 2
the classifierResult came back with: 1,    the real answer is: 1
the classifierResult came back with: 1,    the real answer is: 1
the classifierResult came back with: 1,    the real answer is: 1
the classifierResult came back with: 1,    the real answer is: 1
the classifierResult came back with: 1,    the real answer is: 1
the classifierResult came back with: 2,    the real answer is: 2
the classifierResult came back with: 3,    the real answer is: 3
the classifierResult came back with: 2,    the real answer is: 2
the classifierResult came back with: 1,    the real answer is: 1
the classifierResult came back with: 3,    the real answer is: 2
the classifierResult came back with: 3,    the real answer is: 3
the classifierResult came back with: 2,    the real answer is: 2
the classifierResult came back with: 3,    the real answer is: 3
the classifierResult came back with: 2,    the real answer is: 2
the classifierResult came back with: 3,    the real answer is: 3
the classifierResult came back with: 2,    the real answer is: 2
the classifierResult came back with: 1,    the real answer is: 1
the classifierResult came back with: 3,    the real answer is: 3
the classifierResult came back with: 1,    the real answer is: 1
the classifierResult came back with: 3,    the real answer is: 3
the classifierResult came back with: 1,    the real answer is: 1
the classifierResult came back with: 2,    the real answer is: 2
the classifierResult came back with: 1,    the real answer is: 1
the classifierResult came back with: 1,    the real answer is: 1
the classifierResult came back with: 2,    the real answer is: 2
the classifierResult came back with: 3,    the real answer is: 3
the classifierResult came back with: 3,    the real answer is: 3
the classifierResult came back with: 1,    the real answer is: 1
the classifierResult came back with: 2,    the real answer is: 2
the classifierResult came back with: 3,    the real answer is: 3
the classifierResult came back with: 3,    the real answer is: 3
the classifierResult came back with: 3,    the real answer is: 3
the classifierResult came back with: 1,    the real answer is: 1
the classifierResult came back with: 1,    the real answer is: 1
the classifierResult came back with: 1,    the real answer is: 1
the classifierResult came back with: 1,    the real answer is: 1
the classifierResult came back with: 2,    the real answer is: 2
the classifierResult came back with: 2,    the real answer is: 2
the classifierResult came back with: 1,    the real answer is: 1
the classifierResult came back with: 3,    the real answer is: 3
the classifierResult came back with: 2,    the real answer is: 2
the classifierResult came back with: 2,    the real answer is: 2
the classifierResult came back with: 2,    the real answer is: 2
the classifierResult came back with: 2,    the real answer is: 2
the classifierResult came back with: 3,    the real answer is: 3
the classifierResult came back with: 1,    the real answer is: 1
the classifierResult came back with: 2,    the real answer is: 2
the classifierResult came back with: 1,    the real answer is: 1
the classifierResult came back with: 2,    the real answer is: 2
the classifierResult came back with: 2,    the real answer is: 2
the classifierResult came back with: 2,    the real answer is: 2
the classifierResult came back with: 2,    the real answer is: 2
the classifierResult came back with: 2,    the real answer is: 2
the classifierResult came back with: 3,    the real answer is: 3
the classifierResult came back with: 2,    the real answer is: 2
the classifierResult came back with: 3,    the real answer is: 3
the classifierResult came back with: 1,    the real answer is: 1
the classifierResult came back with: 2,    the real answer is: 2
the classifierResult came back with: 3,    the real answer is: 3
the classifierResult came back with: 2,    the real answer is: 2
the classifierResult came back with: 2,    the real answer is: 2
the classifierResult came back with: 3,    the real answer is: 1
the classifierResult came back with: 3,    the real answer is: 3
the classifierResult came back with: 1,    the real answer is: 1
the classifierResult came back with: 1,    the real answer is: 1
the classifierResult came back with: 3,    the real answer is: 3
the classifierResult came back with: 3,    the real answer is: 3
the classifierResult came back with: 1,    the real answer is: 1
the classifierResult came back with: 2,    the real answer is: 2
the classifierResult came back with: 3,    the real answer is: 3
the classifierResult came back with: 3,    the real answer is: 1
the classifierResult came back with: 3,    the real answer is: 3
the classifierResult came back with: 1,    the real answer is: 1
the classifierResult came back with: 2,    the real answer is: 2
the classifierResult came back with: 2,    the real answer is: 2
the classifierResult came back with: 1,    the real answer is: 1
the classifierResult came back with: 1,    the real answer is: 1
the classifierResult came back with: 3,    the real answer is: 3
the classifierResult came back with: 2,    the real answer is: 3
the classifierResult came back with: 1,    the real answer is: 1
the classifierResult came back with: 2,    the real answer is: 2
the classifierResult came back with: 1,    the real answer is: 1
the classifierResult came back with: 3,    the real answer is: 3
the classifierResult came back with: 3,    the real answer is: 3
the classifierResult came back with: 2,    the real answer is: 2
the classifierResult came back with: 1,    the real answer is: 1
the classifierResult came back with: 3,    the real answer is: 1
the total error rate is: 0.050000

使用算法:构建完整可用系统


def classifyPerson():
  resultList = ['not at all',
          'in small doses',
          'in large doses',]
  percentTats = float(input("percentage of time spent playing video games?"))
  ffMiles = float(input("frequent flier miles earned per year?"))
  iceCream = float(input("liters of ice cream consumed per year?"))
  datingDataMat, datingLabels = file2matrix('/content/drive/MyDrive/MachineLearning/机器学习/k-近邻算法/使用k-近邻算法改进约会网站的配对效果/datingTestSet2.txt')
  normMat, ranges, minVals = autoNorm(datingDataMat)
  inArr = array([ffMiles, percentTats, iceCream])
  classifierResult = classify0((inArr - minVals)/ranges, normMat, datingLabels, 3)
  print("You will probably like this person:", resultList[classifierResult - 1])
classifyPerson()
percentage of time spent playing video games?10
frequent flier miles earned per year?10000
liters of ice cream consumed per year?0.5
You will probably like this person: in small doses


目录
相关文章
|
1月前
|
机器学习/深度学习 算法
机器学习入门(三):K近邻算法原理 | KNN算法原理
机器学习入门(三):K近邻算法原理 | KNN算法原理
|
1月前
|
机器学习/深度学习 算法 API
机器学习入门(五):KNN概述 | K 近邻算法 API,K值选择问题
机器学习入门(五):KNN概述 | K 近邻算法 API,K值选择问题
|
2月前
|
算法 Python
KNN
【9月更文挑战第11天】
48 13
|
2月前
|
算法 大数据
K-最近邻(KNN)
K-最近邻(KNN)
|
2月前
|
机器学习/深度学习 算法 数据挖掘
R语言中的支持向量机(SVM)与K最近邻(KNN)算法实现与应用
【9月更文挑战第2天】无论是支持向量机还是K最近邻算法,都是机器学习中非常重要的分类算法。它们在R语言中的实现相对简单,但各有其优缺点和适用场景。在实际应用中,应根据数据的特性、任务的需求以及计算资源的限制来选择合适的算法。通过不断地实践和探索,我们可以更好地掌握这些算法并应用到实际的数据分析和机器学习任务中。
|
4月前
knn增强数据训练
【7月更文挑战第27天】
35 10
|
4月前
|
机器人 计算机视觉 Python
K-最近邻(KNN)分类器
【7月更文挑战第26天】
45 8
|
4月前
创建KNN类
【7月更文挑战第22天】创建KNN类。
31 8
|
4月前
knn增强数据训练
【7月更文挑战第28天】
39 2
|
3月前
|
机器学习/深度学习 存储 并行计算
C语言与机器学习:K-近邻算法实现
C语言与机器学习:K-近邻算法实现
59 0