数据分析实战丨基于pygal与requests分析GitHub最受欢迎的Python库

简介: 数据分析实战丨基于pygal与requests分析GitHub最受欢迎的Python库

写在前面

本期内容: 基于pygal与requests分析GitHub最受欢迎的30个Python库

实验环境:

  • python
  • requests
  • pygal

实验目标

在现实的应用中,我们经常会使用爬虫分析网络数据,本期博主将用pygal+requests简单对github最受欢迎的30个python库做可视化分析(以stars数量进行排序)。

实验内容

1.配置实验环境

在正式开始之前,我们需要先安装本次实验用到的依赖库:


requests:一个Python第三方库,用于发送HTTP请求,并且提供了简洁而友好的API。它支持各种HTTP方法,并具有自动化的内容解码、会话管理、文件上传下载等功能,是进行Web开发和网络爬虫的常用工具。


pygal:一个开源的Python图表库,用于制作统计图表和可视化数据。它支持多种图表类型,包括折线图、柱状图、饼图等,并且具有丰富的样式和可定制性。通过pygal,用户可以轻松地创建漂亮、交互式的图表,用于数据分析和展示。

安装命令:

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple requests
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pygal

2.GitHub知识点

GitHub官方提供了一个JSON网页,其中存储了按照某个标准排列的项目信息,我们可以通过以下网址查看关键字是python且按照stars数量排列的项目信息:

https://api.github.com/search/repositories?q=language:python&sort=stars

这个网址的JSON数据中,items保存了前30名stars最多的Python项目信息。

重点关注以下信息:

其中:

  • name:表示库名称
  • ogin:表示库的拥有者
  • html_url:表示库的网址
  • stargazers_count:该库被star的数量

3.爬取重要信息

我们先尝试着简单爬取一下本次实验所需要的几个重要信息

程序设计

"""
作者:Want595
微信号:Want_595
公众号:Want595
"""
import requests

url = 'https://api.github.com/search/repositories?q=language:python&sort=stars'
reponse = requests.get(url)
print(reponse.status_code, "响应成功!")
response_dict = reponse.json()
total_repo = response_dict['total_count']
repo_list = response_dict['items']
print("总仓库数:", total_repo)
print('top:', len(repo_list))
for repo_dict in repo_list:
    print('\n名字:', repo_dict['name'])
    print('作者:', repo_dict['owner']['login'])
    print('Stars:', repo_dict['stargazers_count'])
    print('网址:', repo_dict['html_url'])
    print('简介:', repo_dict['description'])

程序分析


该代码使用Python的requests模块来访问GitHub的API,并搜索使用Python语言的仓库,并按照stars数量进行排序。代码首先发送GET请求,然后将响应转换为JSON格式。接着打印总仓库数和top仓库数。然后遍历仓库列表,并打印每个仓库的名称、作者、stars数量、网址和简介。这段代码的作用是获取GitHub上使用Python语言的仓库中的一些基本信息,并打印出来。

运行结果

4.可视化分析

程序设计

"""
作者:Want595
微信号:Want_595
公众号:Want595
"""
import requests
import pygal
from pygal.style import LightColorizedStyle, LightenStyle

url = 'https://api.github.com/search/repositories?q=language:python&sort=stars'
reponse = requests.get(url)
print(reponse.status_code, "响应成功!")
response_dict = reponse.json()
total_repo = response_dict['total_count']
repo_list = response_dict['items']
print("总仓库数:", total_repo)
print('top:', len(repo_list))

names, plot_dicts = [], []

……具体代码请下载后查看哦

程序分析

该程序使用了requests库向GitHub的API发送请求,获取了Python语言的仓库列表,并对返回的数据进行处理和分析。

具体的程序分析如下:

  1. 导入需要使用的库:requests、pygal以及相关的样式库。
  2. 设置GitHub的API请求URL,其中指定了查询语言为Python,并按照星标数(即stars)排序。
  3. 发送GET请求,并获取返回的响应对
  4. 打印响应状态码,用于验证请求是否成功。
  5. 将响应对象的JSON数据转换为字典形式。
  6. 获取仓库的总数和仓库列表。
  7. 打印总仓库数和仓库列表长度。
  8. 初始化用于绘图的变量:names(存储仓库名称)、plot_dicts(存储每个仓库的相关信息)。
  9. 遍历仓库列表,分别获取仓库名称、仓库的星标数、仓库的描述和仓库的URL,并将相关信息添加到对应的变量中。
  10. 初始化绘图的样式和配置。
  11. 创建柱状图对象,并设置标题、横坐标、数据等属性。
  12. 将数据添加到柱状图中。
  13. 将柱状图渲染为SVG文件。

最终的结果是生成了一个包含前30名最受欢迎的Python库的柱状图,并将图表保存为SVG文件。

运行结果

写在后面

我是一只有趣的兔子,感谢你的喜欢!

相关文章
|
3月前
|
JavaScript 前端开发 Java
通义灵码 Rules 库合集来了,覆盖Java、TypeScript、Python、Go、JavaScript 等
通义灵码新上的外挂 Project Rules 获得了开发者的一致好评:最小成本适配我的开发风格、相当把团队经验沉淀下来,是个很好功能……
943 103
|
6天前
基于Reactor模式的高性能网络库github地址
https://github.com/zyi30/reactor-net.git
23 0
|
6天前
|
数据采集 数据可视化 搜索推荐
Python数据分析全流程指南:从数据采集到可视化呈现的实战解析
在数字化转型中,数据分析成为企业决策核心,而Python凭借其强大生态和简洁语法成为首选工具。本文通过实战案例详解数据分析全流程,涵盖数据采集、清洗、探索、建模、可视化及自动化部署,帮助读者掌握从数据到业务价值的完整技能链。
48 0
|
18天前
|
JSON 网络安全 数据格式
Python网络请求库requests使用详述
总结来说,`requests`库非常适用于需要快速、简易、可靠进行HTTP请求的应用场景,它的简洁性让开发者避免繁琐的网络代码而专注于交互逻辑本身。通过上述方式,你可以利用 `requests`处理大部分常见的HTTP请求需求。
147 51
|
5月前
|
监控 API 计算机视觉
CompreFace:Star6.1k,Github上火爆的轻量化且强大的人脸识别库,api,sdk都支持
CompreFace 是一个在 GitHub 上拥有 6.1k Star 的轻量级人脸识别库,支持 API 和 SDK。它由 Exadel 公司开发,基于深度学习技术,提供高效、灵活的人脸识别解决方案。CompreFace 支持多种模型(如 VGG-Face、OpenFace 和 Facenet),具备多硬件支持、丰富的功能服务(如人脸检测、年龄性别识别等)和便捷的部署方式。适用于安防监控、商业领域和医疗美容等多个场景。
427 4
|
1月前
|
数据采集 人工智能 算法
“脏数据不清,分析徒劳”——聊聊数据分析里最容易被忽视的苦差事
“脏数据不清,分析徒劳”——聊聊数据分析里最容易被忽视的苦差事
114 34
|
1月前
|
JSON 数据格式 Python
解决Python requests库POST请求参数顺序问题的方法。
总之,想要在Python的requests库里保持POST参数顺序,你要像捋顺头发一样捋顺它们,在向服务器炫耀你那有条不紊的数据前。抓紧手中的 `OrderedDict`与 `json`这两把钥匙,就能向服务端展示你的请求参数就像经过高端配置的快递包裹,里面的商品摆放井井有条,任何时候开箱都是一种享受。
61 10
|
1月前
|
XML JSON 安全
分析参数顺序对Python requests库进行POST请求的影响。
最后,尽管理论上参数顺序对POST请求没影响,但编写代码时仍然建议遵循一定的顺序和规范,比如URL总是放在第一位,随后是data或json,最后是headers,这样可以提高代码的可读性和维护性。在处理复杂的请求时,一致的参数顺序有助于调试和团队协作。
101 9
|
2月前
|
JSON JavaScript API
MCP 实战:用配置与真实代码玩转 GitHub 集成
MCP 实战:用配置与真实代码玩转 GitHub 集成
944 4
|
4月前
|
人工智能 网络安全 开发工具
vscode代码推送到github库菜鸡专用教程
vscode代码推送到github库菜鸡专用教程

热门文章

最新文章

推荐镜像

更多
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等