豆瓣电影信息爬虫实战-2024年6月

简介: 使用Python和`requests`、`PyQuery`库,本文教程教你如何编写一个豆瓣电影列表页面的爬虫,抓取电影标题、导演、主演等信息。首先确保安装所需库,然后了解技术栈,包括Python、Requests、PyQuery和正则表达式。爬虫逻辑包括发送HTTP请求、解析HTML、提取数据。代码示例展示了如何实现这一过程,最后运行爬虫并将结果保存为JSON文件。注意遵守网站使用条款和应对反爬策略。

豆瓣电影信息爬虫教程

摘要

本文将详细介绍如何使用Python编写一个爬虫程序,用于抓取豆瓣电影列表页面上的电影详细信息。通过本教程,你将学习到如何使用requestsPyQuery库来发送HTTP请求、解析HTML内容,并提取所需的数据。

目标网址:https://www.douban.com/doulist/240962/

image-20240611143649561.png

目录

环境搭建

在开始之前,请确保你的Python环境已经安装了以下库:

pip install requests pyquery

技术栈介绍

  • Python: 一种易于学习且功能强大的编程语言。
  • Requests: 用于发送HTTP请求的库。
  • PyQuery: 类似于jQuery的库,用于解析HTML文档。
  • re (正则表达式): 用于字符串搜索和匹配。

爬虫逻辑概述

本爬虫的主要任务是从一个给定的豆瓣电影列表页面URL中提取电影的详细信息,包括:

  • 电影标题
  • 导演
  • 主演
  • 类型
  • 制作地区
  • 发行年份
  • 评分数量
  • 每部电影的详细URL

详细代码解析

import requests
from pyquery import PyQuery as pq
import re
import json
from datetime import datetime

def doulist_crawler(url):
    '''
    联系方式:
    wx: Wusp1994
    企鹅号: 812190146
    此函数爬取豆瓣电影列表页面,并提取列出的电影的详细信息。
    该函数向指定的豆瓣电影列表URL发送GET请求,并使用预定义的头部信息来模拟浏览器请求。如果请求成功,它将使用PyQuery解析HTML内容,并提取电影的详细信息,如标题、导演、主演、类型、地区、年份、评分和评分数量。每部电影的信息存储在一个字典中,并添加到名为'doulist'的列表中。然后打印出详细信息。
    提取的数据包括:
    - 电影标题
    - 导演
    - 主演
    - 类型
    - 制作地区
    - 发行年份
    - 评分数量
    - 每部电影的详细URL
    参数:
        url (str): 要爬取的豆瓣-豆列的电影列表页面的URL。
        https://www.douban.com/doulist/240962/
    返回:
        list: 包含每部电影详细信息的字典组成的列表。
    :return:
    '''
    # 定义请求头
    headers = {
   
   
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3',
        'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8',
        # 其他需要的请求头...
    }
    # 发送 GET 请求并获取响应内容
    response = requests.get(url, headers=headers)

    # 确保请求成功
    if response.status_code == 200:
        # 使用 PyQuery 解析网页内容
        doc = pq(response.text)
        doulist_item_doc = doc(".doulist-item")
        doulist = []
        for item in doulist_item_doc.items():
            item_dict = {
   
   }
            # 初始化变量
            director = None
            starring = None
            genre = None
            region = None
            year = None
            detail_url = item(".title a").attr("href")
            title = item(".title a").text()
            rating_nums = item(".rating_nums").text()
            rating_count_text = item('.rating span:contains("人评价")').text()
            rating_count = int(re.search(r'\d+', rating_count_text).group(0))
            lines = item('div.abstract').text().split('\n')
            for line in lines:
                if '导演' in line:
                    director = line.split('导演:')[-1].strip()
                elif '主演' in line:
                    starring = line.split('主演:')[-1].strip()
                elif '类型' in line:
                    genre = line.split('类型:')[-1].strip()
                elif '制片国家/地区' in line:
                    region = line.split('制片国家/地区:')[-1].strip()
                elif '年份' in line:
                    year = line.split('年份:')[-1].strip()

            item_dict['director'] = director
            item_dict['starring'] = starring
            item_dict['genre'] = genre
            item_dict['region'] = region
            item_dict['year'] = year
            item_dict['detail_url'] = detail_url
            item_dict['title'] = title
            item_dict['rating_count'] = rating_count
            doulist.append(item_dict)

        return doulist  # 返回电影列表
    else:
        # 联系方式:
        # wx: Wusp1994
        # 企鹅号: 812190146
        print(f"请求失败,状态码:{response.status_code}")
        return []  # 如果请求失败,返回空列表

if __name__ == "__main__":
    # 联系方式:
    # wx: Wusp1994
    # 企鹅号: 812190146
    move_list = doulist_crawler('https://www.douban.com/doulist/240962/')
    json_data = json.dumps(move_list, ensure_ascii=False)
    print(json_data)
    # 将JSON数据写入到文件中
    filename = f"电影列表{datetime.now().strftime('%Y%m%d%H%M%S')}.json"
    with open(filename, 'w', encoding='utf-8') as file:
        # 写入JSON数据,ensure_ascii=False 确保汉字不转义
        json.dump(json.loads(json_data), file, ensure_ascii=False, indent=4)

    print(f"JSON数据已写入到文件:{filename}")

导入库

import requests
from pyquery import PyQuery as pq
import re

定义爬虫函数

def doulist_crawler(url):
    # 函数定义,接受一个豆瓣电影列表页面的URL

设置请求头

headers = {
   
   
    'User-Agent': '...',
    'Accept': '...'
}

发送GET请求

response = requests.get(url, headers=headers)

检查响应状态

if response.status_code == 200:
    # 请求成功,继续处理

解析HTML内容

doc = pq(response.text)

提取电影信息

遍历电影列表项,提取每部电影的相关信息:

for item in doulist_item_doc.items():
    # 提取信息并存储到字典

存储与返回电影信息

doulist.append(item_dict)
return doulist

运行爬虫

要运行爬虫,只需调用doulist_crawler函数,并传入豆瓣电影列表页面的URL:

move_list = doulist_crawler('https://www.douban.com/doulist/240962/')
json_data = json.dumps(move_list, ensure_ascii=False)
print(json_data)
# 将JSON数据写入到文件中
filename = f"电影列表{datetime.now().strftime('%Y%m%d%H%M%S')}.json"
with open(filename, 'w', encoding='utf-8') as file:
    # 写入JSON数据,ensure_ascii=False 确保汉字不转义
    json.dump(json.loads(json_data), file, ensure_ascii=False, indent=4)

    print(f"JSON数据已写入到文件:{filename}")

image-20240611144658847.png

注意事项

  • 遵守豆瓣的使用条款,避免频繁请求。
  • 考虑网站的反爬虫机制,可能需要使用代理或更新请求头。
  • 爬取的数据仅用于个人学习和研究,不得用于商业用途。

结论

通过本文,你已经学习了如何使用Python编写一个简单的爬虫来抓取豆瓣电影信息。这是一个实践网络请求和HTML解析的好机会。希望本文对你有所帮助,祝你编程愉快。

目录
相关文章
|
4月前
|
数据采集 存储 数据可视化
分布式爬虫框架Scrapy-Redis实战指南
本文介绍如何使用Scrapy-Redis构建分布式爬虫系统,采集携程平台上热门城市的酒店价格与评价信息。通过代理IP、Cookie和User-Agent设置规避反爬策略,实现高效数据抓取。结合价格动态趋势分析,助力酒店业优化市场策略、提升服务质量。技术架构涵盖Scrapy-Redis核心调度、代理中间件及数据解析存储,提供完整的技术路线图与代码示例。
378 0
分布式爬虫框架Scrapy-Redis实战指南
|
2月前
|
数据采集 消息中间件 Kubernetes
Kubernetes上的爬虫排队术——任务调度与弹性扩缩容实战
本教程介绍如何在 Kubernetes 上构建可扩展的爬虫系统,解决传统单机爬虫瓶颈。核心内容包括:使用 Docker 打包爬虫任务、RabbitMQ 实现任务队列、爬虫代理防限制、随机 User-Agent 模拟请求,以及通过 Horizontal Pod Autoscaler (HPA) 实现根据任务压力自动扩缩容。适合需要处理大规模网页采集的开发者学习与实践。
Kubernetes上的爬虫排队术——任务调度与弹性扩缩容实战
|
2月前
|
数据采集 Web App开发 前端开发
Python+Selenium爬虫:豆瓣登录反反爬策略解析
Python+Selenium爬虫:豆瓣登录反反爬策略解析
|
2月前
|
数据采集 人工智能 边缘计算
爬虫IP代理效率优化:策略解析与实战案例
本文深入探讨了分布式爬虫中代理池效率优化的关键问题。首先分析了代理效率瓶颈的根源,包括不同类型代理的特点、连接耗时及IP失效问题。接着提出了六大核心优化策略:智能IP轮换矩阵、连接复用优化、动态指纹伪装、智能重试机制等,并结合电商价格监控、社交媒体舆情分析和金融数据抓取三个实战案例,展示了优化效果。同时建立了三维效率评估体系,从质量、成本和稳定性全面衡量性能。最后展望了AI驱动调度、边缘计算融合等未来演进方向,帮助爬虫系统实现从“暴力采集”到“智能获取”的进化,大幅提升效率并降低成本。
62 0
|
3月前
|
数据采集 存储 缓存
Python爬虫与代理IP:高效抓取数据的实战指南
在数据驱动的时代,网络爬虫是获取信息的重要工具。本文详解如何用Python结合代理IP抓取数据:从基础概念(爬虫原理与代理作用)到环境搭建(核心库与代理选择),再到实战步骤(单线程、多线程及Scrapy框架应用)。同时探讨反爬策略、数据处理与存储,并强调伦理与法律边界。最后分享性能优化技巧,助您高效抓取公开数据,实现技术与伦理的平衡。
137 4
|
4月前
|
数据采集 XML 存储
Python爬虫实战:一键采集电商数据,掌握市场动态!
这个爬虫还挺实用,不光能爬电商数据,改改解析规则,啥数据都能爬。写爬虫最重要的是要有耐心,遇到问题别着急,慢慢调试就成。代码写好了,运行起来那叫一个爽,分分钟几千条数据到手。
|
4月前
|
数据采集 存储 安全
Python爬虫实战:利用短效代理IP爬取京东母婴纸尿裤数据,多线程池并行处理方案详解
本文分享了一套结合青果网络短效代理IP和多线程池技术的电商数据爬取方案,针对京东母婴纸尿裤类目商品信息进行高效采集。通过动态代理IP规避访问限制,利用多线程提升抓取效率,同时确保数据采集的安全性和合法性。方案详细介绍了爬虫开发步骤、网页结构分析及代码实现,适用于大规模电商数据采集场景。
|
5月前
|
存储 数据采集 数据库
Python爬虫实战:股票分时数据抓取与存储
Python爬虫实战:股票分时数据抓取与存储
|
4月前
|
数据采集 JSON 监控
Haskell爬虫:为电商运营抓取京东优惠券的实战经验
Haskell爬虫:为电商运营抓取京东优惠券的实战经验
|
7月前
|
数据采集 存储 JavaScript
网页爬虫技术全解析:从基础到实战
在信息爆炸的时代,网页爬虫作为数据采集的重要工具,已成为数据科学家、研究人员和开发者不可或缺的技术。本文全面解析网页爬虫的基础概念、工作原理、技术栈与工具,以及实战案例,探讨其合法性与道德问题,分享爬虫设计与实现的详细步骤,介绍优化与维护的方法,应对反爬虫机制、动态内容加载等挑战,旨在帮助读者深入理解并合理运用网页爬虫技术。