Go 语言基础之面向对象编程

简介: Go 语言基础之面向对象编程

1、OOP

首先,Go 语言并不是面向对象的语言,只是可以通过一些方法来模拟面向对象

1.1、封装

Go 语言是通过结构体(struct)来实现封装的。

1.2、继承

继承主要由下面这三种方式实现:

1.2.1、嵌套匿名字段

//Address 地址结构体
type Address struct {
  Province string
  City     string
}
 
//User 用户结构体
type User struct {
  Name    string
  Gender  string
  Address //匿名字段
}
 
func main() {
  var user2 User
  user2.Name = "小王子"
  user2.Gender = "男"
  user2.Address.Province = "山东"    // 匿名字段默认使用类型名作为字段名
  user2.City = "威海"                // 匿名字段可以省略
  fmt.Printf("user2=%#v\n", user2) //user2=main.User{Name:"小王子", Gender:"男", Address:main.Address{Province:"山东", City:"威海"}}
}

1.2.2、嵌套结构体

//Address 地址结构体
type Address struct {
  Province string
  City     string
}
 
//User 用户结构体
type User struct {
  Name    string
  Gender  string
  Address Address
}
 
func main() {
  user1 := User{
    Name:   "小王子",
    Gender: "男",
    Address: Address{
      Province: "山东",
      City:     "威海",
    },
  }
  fmt.Printf("user1=%#v\n", user1)//user1=main.User{Name:"小王子", Gender:"男", Address:main.Address{Province:"山东", City:"威海"}}
}

1.2.3、嵌套匿名结构体指针

//Animal 动物
type Animal struct {
  name string
}
 
func (a *Animal) move() {
  fmt.Printf("%s会动!\n", a.name)
}
 
//Dog 狗
type Dog struct {
  Feet    int8
  *Animal //通过嵌套匿名结构体实现继承
}
 
func (d *Dog) wang() {
  fmt.Printf("%s会汪汪汪~\n", d.name)
}
 
func main() {
  d1 := &Dog{
    Feet: 4,
    Animal: &Animal{ //注意嵌套的是结构体指针
      name: "乐乐",
    },
  }
  d1.wang() //乐乐会汪汪汪~
  d1.move() //乐乐会动!
}

       而既然结构体可以继承,那么结构体就必须有方法,Go 语言的方法必须在方法名前面声明调用者。子类可以重写父类方法:如果在子结构体(或任何类型)上定义了一个与父结构体中同名的方法,那么这个方法就会覆盖父结构体中的方法。这就实现了重写。

1.3、多态

多态:一个事物拥有多种形态就是多态!

有多态就必须要有接口,因为接口就是为了解决多态这个问题的:

1.3.1、接口

  • Go 语言提供了接口数据类型
  • 接口就是把一些共性的方法放在一起定义
  • Go 语言中的接口是隐式声明的(相比较 Java 会用 implements 关键字显示声明)
  • 只有实现类把接口的方法全部实现才算实现了这个接口

接口的实现类都拥有多态的特性,因为它除了是自己还是它的接口类型

package main
 
import "fmt"
 
// 接口
type USB interface {
  input()
  output()
}
 
// 结构体
type Mouse struct {
  name string
}
// 实现接口:实现了接口的所有方法才算实现了这个接口
func (mouse Mouse) input(){
  fmt.Println(mouse.name,"鼠标输入")
}
func (mouse Mouse) output(){
  fmt.Println(mouse.name,"鼠标输出")
}
 
type KeyBoard struct {
  name string
}
func (keyBoard KeyBoard) input(){
  fmt.Println(keyBoard.name,"键盘输入")
}
func (keyBoard KeyBoard) output(){
  fmt.Println(keyBoard.name,"键盘输出")
}
 
func test(u USB) {
  u.input()
  u.output()
}
 
func main() {
  mouse := Mouse{name: "罗技"}
  test(mouse)
 
  keyBoard := KeyBoard{name: "艾石头"}
  test(keyBoard)
 
    // 通过接口创建子类实例
  var usb USB = Mouse{name: "外星人"}
  usb.input()
  // 但是接口是无法使用实现类的属性的
}

运行结果:

罗技 鼠标输入
罗技 鼠标输出
艾石头 键盘输入
艾石头 键盘输出
 
外星人 鼠标输入

1.3.2、空接口

空接口不包含任何方法,所以所有的结构体都默认实现了空接口(类似于 Java 的 Object)!

所谓的空接口,就是:

type 接口名称 interface{}

go 语言中的 any 其实就是空接口,我们可以在源码中看到:

       如果我们定义一个方法或者函数它可以传入一个空接口类型,那么就相当于任何类型都可以传入这个方法或函数,因为任何结构体类型的都实现了空接口。比如我们 go 语言中的打印方法的参数就都是 any ... 。

2、接口

       上面只是描述了接口是怎么实现多态的,但是对接口的用法并没有深入介绍,这里我们详细介绍接口的用法。

2.1、接口的定义

type 接口名 interface{
    方法名1(参数列表) (返回值列表)
    方法名2(参数列表) (返回值列表)
    // ...
}

需要注意的是:

  • 接口类型名:Go语言的接口在命名时,一般会在单词后面添加er,如有写操作的接口叫Writer,有关闭操作的接口叫closer等。接口名最好要能突出该接口的类型含义。
  • 方法名当方法名首字母是大写且这个接口类型名首字母也是大写时,这个方法可以被接口所在的包(package)之外的代码访问。
  • 参数列表、返回值列表:参数列表和返回值列表中的参数变量名可以省略。

2.2、接口类型变量

所谓的接口类型变量就就像 Java 中的:

Map<String,Integer> map;
HashMap<String,Integer> map1 = new HashMap<>();
TreeMap<String,Integer> map2 = new TreeMap<>();
map = m1;
map = m2;

这里的变量 map 就是一个接口变量,接口变量可以通过任何实现类来赋值。

2.3、接口的嵌套

Go 语言中的接口可以组合嵌套,这是区别于 Java 很大的一点。在 Go标准库 io 源码中就有很多接口之间互相组合的示例:

// src/io/io.go
 
type Reader interface {
  Read(p []byte) (n int, err error)
}
 
type Writer interface {
  Write(p []byte) (n int, err error)
}
 
type Closer interface {
  Close() error
}
 
// ReadWriter 是组合Reader接口和Writer接口形成的新接口类型
type ReadWriter interface {
  Reader
  Writer
}
 
// ReadCloser 是组合Reader接口和Closer接口形成的新接口类型
type ReadCloser interface {
  Reader
  Closer
}
 
// WriteCloser 是组合Writer接口和Closer接口形成的新接口类型
type WriteCloser interface {
  Writer
  Closer
}

同时,接口也可以作为结构体的字段,就像 Java 中 Map 可以作为对象属性一样:

// src/sort/sort.go
 
// Interface 定义通过索引对元素排序的接口类型
type Interface interface {
    Len() int
    Less(i, j int) bool
    Swap(i, j int)
}
 
 
// reverse 结构体中嵌入了Interface接口
type reverse struct {
    Interface
}

2.4、类型断言

       类型断言就像 Java 中的强转一样,一般是把一个抽象的接口类型转为一个确定的实现类型。好像说我们可以"断言"这个接口类型一定是这个实现类类型。

2.4.1、语法

x.(T)
  • x:表示接口类型的变量(如果不是接口类型的就在前面加上空接口)
  • T:表示断言 x 是 T 类型

注意:类型断言的返回结果是两个参数,第一个返回值是一个转为断言类型后的变量,第二个返回值是转为断言的结果(布尔类型,代表成功/失败)

       对于数值类型( 比如 int、string、float64... )这些不是接口类型的数据,如果要做类型断言就需要给它前面加个空接口,因为所有类型都是隐式地实现了空接口的。

    str := "10"
    // 第2个返回值是断言结果
  res,_ := interface{}(str).(int)
  fmt.Println(res) // 10

       对于接口类型变量,如果我们能知道它是哪个实现类型就可以直接进行类型断言:

    ​​var usb USB = Mouse{name: "外星人"}
    // 类型断言 这里没有接收第二个返回值,代表丢弃
  m := usb.(Mouse)
  fmt.Println(m)

       上面的 USB 是接口类型,而它的地址指向一个 Mouse 类型的实例,所以我们可以断言这个 USB 实例一定是 Mouse 类型。

相关文章
|
25天前
|
运维 监控 算法
监控局域网其他电脑:Go 语言迪杰斯特拉算法的高效应用
在信息化时代,监控局域网成为网络管理与安全防护的关键需求。本文探讨了迪杰斯特拉(Dijkstra)算法在监控局域网中的应用,通过计算最短路径优化数据传输和故障检测。文中提供了使用Go语言实现的代码例程,展示了如何高效地进行网络监控,确保局域网的稳定运行和数据安全。迪杰斯特拉算法能减少传输延迟和带宽消耗,及时发现并处理网络故障,适用于复杂网络环境下的管理和维护。
|
26天前
|
编译器 Go
揭秘 Go 语言中空结构体的强大用法
Go 语言中的空结构体 `struct{}` 不包含任何字段,不占用内存空间。它在实际编程中有多种典型用法:1) 结合 map 实现集合(set)类型;2) 与 channel 搭配用于信号通知;3) 申请超大容量的 Slice 和 Array 以节省内存;4) 作为接口实现时明确表示不关注值。此外,需要注意的是,空结构体作为字段时可能会因内存对齐原因占用额外空间。建议将空结构体放在外层结构体的第一个字段以优化内存使用。
|
1月前
|
存储 Go
Go 语言入门指南:切片
Golang中的切片(Slice)是基于数组的动态序列,支持变长操作。它由指针、长度和容量三部分组成,底层引用一个连续的数组片段。切片提供灵活的增减元素功能,语法形式为`[]T`,其中T为元素类型。相比固定长度的数组,切片更常用,允许动态调整大小,并且多个切片可以共享同一底层数组。通过内置的`make`函数可创建指定长度和容量的切片。需要注意的是,切片不能直接比较,只能与`nil`比较,且空切片的长度为0。
Go 语言入门指南:切片
|
1月前
|
开发框架 前端开发 Go
eino — 基于go语言的大模型应用开发框架(二)
本文介绍了如何使用Eino框架实现一个基本的LLM(大语言模型)应用。Eino中的`ChatModel`接口提供了与不同大模型服务(如OpenAI、Ollama等)交互的统一方式,支持生成完整响应、流式响应和绑定工具等功能。`Generate`方法用于生成完整的模型响应,`Stream`方法以流式方式返回结果,`BindTools`方法为模型绑定工具。此外,还介绍了通过`Option`模式配置模型参数及模板功能,支持基于前端和用户自定义的角色及Prompt。目前主要聚焦于`ChatModel`的`Generate`方法,后续将继续深入学习。
287 7
|
26天前
|
存储 缓存 监控
企业监控软件中 Go 语言哈希表算法的应用研究与分析
在数字化时代,企业监控软件对企业的稳定运营至关重要。哈希表(散列表)作为高效的数据结构,广泛应用于企业监控中,如设备状态管理、数据分类和缓存机制。Go 语言中的 map 实现了哈希表,能快速处理海量监控数据,确保实时准确反映设备状态,提升系统性能,助力企业实现智能化管理。
34 3
|
1月前
|
存储 开发框架 Devops
eino — 基于go语言的大模型应用开发框架(一)
Eino 是一个受开源社区优秀LLM应用开发框架(如LangChain和LlamaIndex)启发的Go语言框架,强调简洁性、可扩展性和可靠性。它提供了易于复用的组件、强大的编排框架、简洁明了的API、最佳实践集合及实用的DevOps工具,支持快速构建和部署LLM应用。Eino不仅兼容多种模型库(如OpenAI、Ollama、Ark),还提供详细的官方文档和活跃的社区支持,便于开发者上手使用。
207 8
|
26天前
|
存储 缓存 安全
Go 语言中的 Sync.Map 详解:并发安全的 Map 实现
`sync.Map` 是 Go 语言中用于并发安全操作的 Map 实现,适用于读多写少的场景。它通过两个底层 Map(`read` 和 `dirty`)实现读写分离,提供高效的读性能。主要方法包括 `Store`、`Load`、`Delete` 等。在大量写入时性能可能下降,需谨慎选择使用场景。
|
1月前
|
存储 算法 Go
Go语言实战:错误处理和panic_recover之自定义错误类型
本文深入探讨了Go语言中的错误处理和panic/recover机制,涵盖错误处理的基本概念、自定义错误类型的定义、panic和recover的工作原理及应用场景。通过具体代码示例介绍了如何定义自定义错误类型、检查和处理错误值,并使用panic和recover处理运行时错误。文章还讨论了错误处理在实际开发中的应用,如网络编程、文件操作和并发编程,并推荐了一些学习资源。最后展望了未来Go语言在错误处理方面的优化方向。
|
27天前
|
SQL 安全 Java
阿里双十一背后的Go语言实践:百万QPS网关的设计与实现
解析阿里核心网关如何利用Go协程池、RingBuffer、零拷贝技术支撑亿级流量。 重点分享: ① 如何用gRPC拦截器实现熔断限流; ② Sync.Map在高并发读写中的取舍。
|
1月前
|
存储 算法 安全
基于 Go 语言的公司内网管理软件哈希表算法深度解析与研究
在数字化办公中,公司内网管理软件通过哈希表算法保障信息安全与高效管理。哈希表基于键值对存储和查找,如用户登录验证、设备信息管理和文件权限控制等场景,Go语言实现的哈希表能快速验证用户信息,提升管理效率,确保网络稳定运行。
28 0