Flink 实时数仓(一)【实时数仓&离线数仓对比】(2)

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
云原生数据仓库AnalyticDB MySQL版,基础版 8ACU 100GB 1个月
简介: Flink 实时数仓(一)【实时数仓&离线数仓对比】

Flink 实时数仓(一)【实时数仓&离线数仓对比】(1)https://developer.aliyun.com/article/1534237

3、项目架构设计准备

我们接下来会创建一个普通 Maven 项目 gmall2024-realtime ,并创建四个 module:

  1. realtime-common:用于引入公共的第三方依赖,编写工具类、实体类等。
  2. realtime-dim:用于编写DIM层业务代码。
  3. realtime-dwd:用于编写DWD层业务代码。
  4. realtime-dws:用于编写DWS层业务代码。

其中,后三个module统称为业务模块,业务模块都要将realtime-common模块作为依赖引入。

3.1、创建父工程 gmall2024-realtime

在父项目中声明一些依赖,这些依赖不会打包到 jar 包里,但是我们在本地运行的时候需要提供:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
 
    <groupId>org.lyh</groupId>
    <artifactId>gmall2024-realtime</artifactId>
    <packaging>pom</packaging>
    <version>1.0-SNAPSHOT</version>
    <modules>
        <module>realtime-common</module>
        <module>realtime-dim</module>
        <module>realtime-dwd</module>
        <module>realtime-dws</module>
    </modules>
 
    <properties>
        <java.version>1.8</java.version>
        <maven.compiler.source>${java.version}</maven.compiler.source>
        <maven.compiler.target>${java.version}</maven.compiler.target>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
        <flink.version>1.17.1</flink.version>
        <scala.version>2.12</scala.version>
        <hadoop.version>3.3.4</hadoop.version>
        <flink-cdc.vesion>2.4.0</flink-cdc.vesion>
        <fastjson.version>1.2.83</fastjson.version>
        <hbase.version>2.4.11</hbase.version>
    </properties>
 
    <dependencies>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-java</artifactId>
            <version>${flink.version}</version>
            <scope>provided</scope>
        </dependency>
 
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-clients</artifactId>
            <version>${flink.version}</version>
            <scope>provided</scope>
        </dependency>
 
        <dependency><!--在 idea 运行的时候,可以打开 web 页面-->
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-runtime-web</artifactId>
            <version>${flink.version}</version>
            <scope>provided</scope>
        </dependency>
 
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-json</artifactId>
            <version>${flink.version}</version>
            <scope>provided</scope>
        </dependency>
 
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-csv</artifactId>
            <version>${flink.version}</version>
            <scope>provided</scope>
        </dependency>
 
        <!--如果保存检查点到hdfs上,需要引入此依赖-->
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>${hadoop.version}</version>
            <scope>provided</scope>
        </dependency>
 
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-auth</artifactId>
            <scope>provided</scope>
            <exclusions>
                <exclusion>
                    <groupId>org.slf4j</groupId>
                    <artifactId>slf4j-reload4j</artifactId>
                </exclusion>
            </exclusions>
        </dependency>
 
        <dependency>
            <groupId>org.projectlombok</groupId>
            <artifactId>lombok</artifactId>
            <version>1.18.20</version>
            <scope>provided</scope>
        </dependency>
 
        <!--Flink默认使用的是slf4j记录日志,相当于一个日志的接口,我们这里使用log4j作为具体的日志实现-->
        <dependency>
            <groupId>org.slf4j</groupId>
            <artifactId>slf4j-api</artifactId>
            <version>1.7.25</version>
            <scope>provided</scope>
        </dependency>
 
        <dependency>
            <groupId>org.apache.logging.log4j</groupId>
            <artifactId>log4j-to-slf4j</artifactId>
            <version>2.14.0</version>
            <scope>provided</scope>
        </dependency>
 
 
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-api-java-bridge</artifactId>
            <version>${flink.version}</version>
            <scope>provided</scope>
        </dependency>
 
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-planner-loader</artifactId>
            <version>${flink.version}</version>
            <scope>provided</scope>
        </dependency>
 
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-runtime</artifactId>
            <version>${flink.version}</version>
            <scope>provided</scope>
        </dependency>
 
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-files</artifactId>
            <version>${flink.version}</version>
            <scope>provided</scope>
        </dependency>
    </dependencies>
 
 
    <dependencyManagement>
        <dependencies>
            <dependency>
                <groupId>com.alibaba</groupId>
                <artifactId>fastjson</artifactId>
                <version>${fastjson.version}</version>
            </dependency>
 
            <dependency>
                <groupId>org.apache.flink</groupId>
                <artifactId>flink-connector-kafka</artifactId>
                <version>${flink.version}</version>
            </dependency>
 
            <dependency>
                <groupId>com.ververica</groupId>
                <artifactId>flink-connector-mysql-cdc</artifactId>
                <version>${flink-cdc.vesion}</version>
            </dependency>
 
            <!-- hbase 依赖-->
            <dependency>
                <groupId>org.apache.hbase</groupId>
                <artifactId>hbase-client</artifactId>
                <version>${hbase.version}</version>
            </dependency>
 
            <dependency>
                <groupId>org.apache.hadoop</groupId>
                <artifactId>hadoop-auth</artifactId>
                <version>${hadoop.version}</version>
                <scope>provided</scope>
                <exclusions>
                    <exclusion>
                        <groupId>org.slf4j</groupId>
                        <artifactId>slf4j-reload4j</artifactId>
                    </exclusion>
                </exclusions>
            </dependency>
 
            <dependency>
                <groupId>org.apache.flink</groupId>
                <artifactId>flink-connector-hbase-2.2</artifactId>
                <version>${flink.version}</version>
            </dependency>
 
            <!-- https://mvnrepository.com/artifact/org.apache.doris/flink-doris-connector-1.17 -->
            <dependency>
                <groupId>org.apache.doris</groupId>
                <artifactId>flink-doris-connector-1.17</artifactId>
                <version>1.4.0</version>
            </dependency>
 
            <dependency>
                <groupId>commons-beanutils</groupId>
                <artifactId>commons-beanutils</artifactId>
                <version>1.9.4</version>
            </dependency>
 
            <dependency>
                <groupId>com.janeluo</groupId>
                <artifactId>ikanalyzer</artifactId>
                <version>2012_u6</version>
            </dependency>
 
            <dependency>
                <groupId>redis.clients</groupId>
                <artifactId>jedis</artifactId>
                <version>3.3.0</version>
            </dependency>
 
            <dependency>
                <groupId>io.lettuce</groupId>
                <artifactId>lettuce-core</artifactId>
                <version>6.2.4.RELEASE</version>
            </dependency>
 
        </dependencies>
 
    </dependencyManagement>
 
    <build>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-shade-plugin</artifactId>
                <!--原本是 3.1.1-->
                <version>3.5.0</version>
                <executions>
                    <execution>
                        <phase>package</phase>
                        <goals>
                            <goal>shade</goal>
                        </goals>
                        <configuration>
                            <artifactSet>
                                <excludes>
                                    <exclude>com.google.code.findbugs:jsr305</exclude>
                                    <exclude>org.slf4j:*</exclude>
                                    <exclude>log4j:*</exclude>
                                    <exclude>org.apache.hadoop:*</exclude>
                                </excludes>
                            </artifactSet>
                            <filters>
                                <filter>
                                    <!-- Do not copy the signatures in the META-INF folder.Otherwise, this might cause SecurityExceptions when using the JAR. -->
                                    <!-- 打包时不复制META-INF下的签名文件,避免报非法签名文件的SecurityExceptions异常-->
                                    <artifact>*:*</artifact>
                                    <excludes>
                                        <exclude>META-INF/*.SF</exclude>
                                        <exclude>META-INF/*.DSA</exclude>
                                        <exclude>META-INF/*.RSA</exclude>
                                    </excludes>
                                </filter>
                            </filters>
 
                            <transformers combine.children="append">
                                <!-- The service transformer is needed to merge META-INF/services files -->
                                <!-- connector和format依赖的工厂类打包时会相互覆盖,需要使用ServicesResourceTransformer解决-->
                                <transformer
                                        implementation="org.apache.maven.plugins.shade.resource.ServicesResourceTransformer"/>
                            </transformers>
                        </configuration>
                    </execution>
                </executions>
            </plugin>
        </plugins>
    </build>
 
 
</project>

dependencyManagement 标签下的依赖同样不会被打包进 jar 包,它在这里只是起到一个管理版本的作用。

3.2、创建公共模块 realtime-common

新建子模块 realtime-common ,导入依赖,这里的依赖不需要写版本号,因为我们都是继承自父工程 gmall2024-realtime 的,它帮我们进行了版本管理。

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <parent>
        <artifactId>gmall2024-realtime</artifactId>
        <groupId>org.lyh</groupId>
        <version>1.0-SNAPSHOT</version>
    </parent>
    <modelVersion>4.0.0</modelVersion>
 
    <artifactId>realtime-common</artifactId>
 
    <properties>
        <maven.compiler.source>8</maven.compiler.source>
        <maven.compiler.target>8</maven.compiler.target>
    </properties>
 
    <dependencies>
 
        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>fastjson</artifactId>
        </dependency>
 
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-kafka</artifactId>
        </dependency>
 
        <dependency>
            <groupId>com.ververica</groupId>
            <artifactId>flink-connector-mysql-cdc</artifactId>
        </dependency>
 
        <!-- hbase 依赖-->
        <dependency>
            <groupId>org.apache.hbase</groupId>
            <artifactId>hbase-client</artifactId>
        </dependency>
 
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-hbase-2.2</artifactId>
        </dependency>
 
        <!-- https://mvnrepository.com/artifact/org.apache.doris/flink-doris-connector-1.17 -->
        <dependency>
            <groupId>org.apache.doris</groupId>
            <artifactId>flink-doris-connector-1.17</artifactId>
        </dependency>
 
        <dependency>
            <groupId>commons-beanutils</groupId>
            <artifactId>commons-beanutils</artifactId>
        </dependency>
 
        <dependency>
            <groupId>com.janeluo</groupId>
            <artifactId>ikanalyzer</artifactId>
        </dependency>
 
        <dependency>
            <groupId>redis.clients</groupId>
            <artifactId>jedis</artifactId>
        </dependency>
 
        <dependency>
            <groupId>io.lettuce</groupId>
            <artifactId>lettuce-core</artifactId>
        </dependency>
    </dependencies>
 
</project>

       在 realtime-common 模块中,除了要把一些公共的包导进来,还需要把一些全局使用的东西配置一下,比如 log4j 和一些公共的类库:

log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.target=System.out
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d{yyyy-MM-dd HH:mm:ss} %10p (%c:%M) - %m%n
log4j.rootLogger=error,stdout

3.3、创建其它子模块

新建子模块 realtime-dim、这些模块都不再需要导入所以依赖了,只需要继承导入 realtime-common 模块即可。

    <dependencies>
        <dependency>
            <groupId>org.lyh</groupId>
            <artifactId>realtime-common</artifactId>
            <version>1.0-SNAPSHOT</version>
            <scope>provided</scope>
        </dependency>
    </dependencies>

总结

       至此,准备工作基本完成了,这一节最重要的就是学习离线数仓和实时数仓的一些区别了,比如每一层的存储方式,在离线数仓中我们不需要考虑时效性,所以存到 HDFS 当中即可,但是实时数仓考虑到时效性,我们的数据尽可能以一个流的形式被处理,所以我们的实时数仓主要借助 Kafka 以及 HBase、Redis 等一些快速或者在大数据场景下相对快速的工具进行数据存储。

相关实践学习
AnalyticDB MySQL海量数据秒级分析体验
快速上手AnalyticDB MySQL,玩转SQL开发等功能!本教程介绍如何在AnalyticDB MySQL中,一键加载内置数据集,并基于自动生成的查询脚本,运行复杂查询语句,秒级生成查询结果。
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
相关文章
|
20天前
|
存储 SQL Java
Flink CDC + Hologres高性能数据同步优化实践
本文整理自阿里云高级技术专家胡一博老师在Flink Forward Asia 2024数据集成(二)专场的分享,主要内容包括:1. Hologres介绍:实时数据仓库,支持毫秒级写入和高QPS查询;2. 写入优化:通过改进缓冲队列、连接池和COPY模式提高吞吐量和降低延迟;3. 消费优化:优化离线场景和分区表的消费逻辑,提升性能和资源利用率;4. 未来展望:进一步简化用户操作,支持更多DDL操作及全增量消费。Hologres 3.0全新升级为一体化实时湖仓平台,提供多项新功能并降低使用成本。
220 1
Flink CDC + Hologres高性能数据同步优化实践
|
1月前
|
SQL 消息中间件 Kafka
Flink+Paimon+Hologres,面向未来的一体化实时湖仓平台架构设计
本文介绍了阿里云实时数仓Hologres负责人姜伟华在Flink Forward Asia 2024上的分享,涵盖实时数仓的发展历程、从实时数仓到实时湖仓的演进,以及总结。文章通过三代实时数仓架构的演变,详细解析了Lambda架构、Kafka实时数仓分层+OLAP、Hologres实时数仓分层复用等方案,并探讨了未来从实时数仓到实时湖仓的演进方向。最后,结合实际案例和Demo展示了Hologres + Flink + Paimon在实时湖仓中的应用,帮助用户根据业务需求选择合适的方案。
587 20
Flink+Paimon+Hologres,面向未来的一体化实时湖仓平台架构设计
|
1月前
|
存储 关系型数据库 MySQL
Flink基于Paimon的实时湖仓解决方案的演进
本文整理自阿里云智能集团苏轩楠老师在Flink Forward Asia 2024论坛的分享,涵盖流式湖仓架构的背景介绍、技术演进和未来发展规划。背景部分介绍了ODS、DWD、DWS三层数据架构及关键组件Flink与Paimon的作用;技术演进讨论了全量与增量数据处理优化、宽表构建及Compaction操作的改进;发展规划则展望了Range Partition、Materialized Table等新功能的应用前景。通过这些优化,系统不仅简化了复杂度,还提升了实时与离线处理的灵活性和效率。
390 3
Flink基于Paimon的实时湖仓解决方案的演进
|
1月前
|
SQL 存储 HIVE
鹰角基于 Flink + Paimon + Trino 构建湖仓一体化平台实践项目
本文整理自鹰角网络大数据开发工程师朱正军在Flink Forward Asia 2024上的分享,主要涵盖四个方面:鹰角数据平台架构、数据湖选型、湖仓一体建设及未来展望。文章详细介绍了鹰角如何构建基于Paimon的数据湖,解决了Hudi入湖的痛点,并通过Trino引擎和Ranger权限管理实现高效的数据查询与管控。此外,还探讨了湖仓一体平台的落地效果及未来技术发展方向,包括Trino与Paimon的集成增强、StarRocks的应用以及Paimon全面替换Hive的计划。
196 1
鹰角基于 Flink + Paimon + Trino 构建湖仓一体化平台实践项目
|
24天前
|
SQL 消息中间件 Serverless
​Flink+Paimon+Hologres,面向未来的一体化实时湖仓平台架构设计
​Flink+Paimon+Hologres,面向未来的一体化实时湖仓平台架构设计
|
24天前
|
SQL 存储 HIVE
鹰角基于 Flink + Paimon + Trino 构建湖仓一体化平台实践项目
鹰角基于 Flink + Paimon + Trino 构建湖仓一体化平台实践项目
|
2月前
|
SQL 监控 关系型数据库
用友畅捷通在Flink上构建实时数仓、挑战与最佳实践
本文整理自用友畅捷通数据架构师王龙强在FFA2024上的分享,介绍了公司在Flink上构建实时数仓的经验。内容涵盖业务背景、数仓建设、当前挑战、最佳实践和未来展望。随着数据量增长,公司面临数据库性能瓶颈及实时数据处理需求,通过引入Flink技术逐步解决了数据同步、链路稳定性和表结构差异等问题,并计划在未来进一步优化链路稳定性、探索湖仓一体架构以及结合AI技术推进数据资源高效利用。
475 25
用友畅捷通在Flink上构建实时数仓、挑战与最佳实践
|
24天前
|
存储 关系型数据库 MySQL
Flink基于Paimon的实时湖仓解决方案的演进
Flink基于Paimon的实时湖仓解决方案的演进
|
4月前
|
SQL 运维 网络安全
【实践】基于Hologres+Flink搭建GitHub实时数据查询
本文介绍了如何利用Flink和Hologres构建GitHub公开事件数据的实时数仓,并对接BI工具实现数据实时分析。流程包括创建VPC、Hologres、OSS、Flink实例,配置Hologres内部表,通过Flink实时写入数据至Hologres,查询实时数据,以及清理资源等步骤。
|
2月前
|
存储 消息中间件 OLAP
Hologres+Flink企业级实时数仓核心能力介绍-2024实时数仓Hologres线上公开课03
本次分享由阿里云产品经理骆撷冬(观秋)主讲,主题为“Hologres+Flink企业级实时数仓核心能力”,是2024实时数仓Hologres线上公开课的第三期。课程详细介绍了Hologres与Flink结合搭建的企业级实时数仓的核心能力,包括解决实时数仓分层问题、基于Flink Catalog的Streaming Warehouse实践,并通过典型客户案例展示了其应用效果。
75 10
Hologres+Flink企业级实时数仓核心能力介绍-2024实时数仓Hologres线上公开课03