人工智能平台PAI操作报错合集之alink任务可以在本地运行,上传到flink web运行就报错,如何解决

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
简介: 阿里云人工智能平台PAI (Platform for Artificial Intelligence) 是阿里云推出的一套全面、易用的机器学习和深度学习平台,旨在帮助企业、开发者和数据科学家快速构建、训练、部署和管理人工智能模型。在使用阿里云人工智能平台PAI进行操作时,可能会遇到各种类型的错误。以下列举了一些常见的报错情况及其可能的原因和解决方法。

问题一:机器学习PAI模型使用mmoe+din+senet时,遇到如下错误,帮忙看看时怎么回事?


机器学习PAI模型使用mmoe+din+senet时,遇到如下错误,帮忙看看时怎么回事哈

ValueError: Variable se_net_1/W1/kernel does not exist, or was not created with tf.get_variable(). Did you mean to set reuse=tf.AUTO_REUSE in VarScope?


参考回答:

该问题的原因是,在 se_net_1 层中,你使用了 reuse=True,但是 W1 变量没有设置 reuse 属性。你可以将 reuse 属性设置为 False,或在调用 create_variable 函数时设置 reuse=tf.AUTO_REUSE。


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/582285



问题二:机器学习PAI还是不可以,但是换错误了,这个float是哪里来的?


机器学习PAI还是不可以,但是换错误了,为什么i_hotel_cnt_comment这个字段,我设置的,以及数据表中的数据都是int类型,但为什么报错说 expected float ?这个float是哪里来的?

是不是在fg.json中没有设置数据类型就会在代码中给设置默认类型?


参考回答:

你的特征类型是raw feature 所以会转成float


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/580777



问题三:机器学习PAI调用在线eas时候报错,能看下是什么原因吗?


机器学习PAI调用在线eas时候报错,能看下是什么原因吗?已经检查过离线和在线特征是一致的,而且离线predict也没问题。


参考回答:

同一个 group 内的序列要等长。如果不确定的话,先把出错的特征设置成默认值试试看,看看这个特征的feature config 呢


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/577011



问题四:机器学习PAI的alink任务在本地运行好好的,上传到flink web运行就报这个错误。怎么解决?


机器学习PAI的alink任务在本地运行好好的,上传到flink web运行就报这个错误。怎么解决?org.apache.flink.runtime.rest.handler.RestHandlerException: Could not execute application. at org.apache.flink.runtime.webmonitor.handlers.JarRunHandler.lambda$handleRequest$1(JarRunHandler.java:110) at java.util.concurrent.CompletableFuture.uniHandle(CompletableFuture.java:836) at java.util.concurrent.CompletableFuture$UniHandle.tryFire(CompletableFuture.java:811) at java.util.concurrent.CompletableFuture.postComplete(CompletableFuture.java:488) at java.util.concurrent.CompletableFuture$AsyncSupply.run(CompletableFuture.java:1609) at java.lang.Thread.run(Thread.java:750) Caused by: java.util.concurrent.CompletionException: org.apache.flink.util.FlinkRuntimeException: Could not execute application. at java.util.concurrent.CompletableFuture.encodeThrowable(CompletableFuture.java:273) at java.util.concurrent.CompletableFuture.completeThrowable(CompletableFuture.java:280) at java.util.concurrent.CompletableFuture$AsyncSupply.run(CompletableFuture.java:1606) ... 1 more Caused by: org.apache.flink.util.FlinkRuntimeException: Could not execute application. at org.apache.flink.client.deployment.application.DetachedApplicationRunner.tryExecuteJobs(DetachedApplicationRunner.java:88) at org.apache.flink.client.deployment.application.DetachedApplicationRunner.run(DetachedApplicationRunner.java:70) at org.apache.flink.runtime.webmonitor.handlers.JarRunHandler.lambda$handleRequest$0(JarRunHandler.java:104) at java.util.concurrent.CompletableFuture$AsyncSupply.run(CompletableFuture.java:1604) ... 1 more Caused by: org.apache.flink.client.program.ProgramInvocationException: The main method caused an error: Failed to collect ops data. at org.apache.flink.client.program.PackagedProgram.callMainMethod(PackagedProgram.java:372) at org.apache.flink.client.program.PackagedProgram.invokeInteractiveModeForExecution(PackagedProgram.java:222) at org.apache.flink.client.ClientUtils.executeProgram(ClientUtils.java:114) at org.apache.flink.client.deployment.application.DetachedApplicationRunner.tryExecuteJobs(DetachedApplicationRunner.java:84) ... 4 more Caused by: ERROR: 0x0860080000001003-Flink execution error: Failed to collect ops data. at com.alibaba.alink.operator.batch.BatchOperator.triggerLazyEvaluation(BatchOperator.java:709) at com.alibaba.alink.operator.batch.BatchOperator.triggerLazyEvaluation(BatchOperator.java:689) at com.alibaba.alink.operator.batch.BatchOperator.print(BatchOperator.java:441) at com.alibaba.alink.operator.batch.BatchOperator.print(BatchOperator.java:436) at com.alibaba.alink.operator.batch.BatchOperator.print(BatchOperator.java:428) at com.xiaoai.StreamxAlinkMain.main(StreamxAlinkMain.java:55) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at org.apache.flink.client.program.PackagedProgram.callMainMethod(PackagedProgram.java:355) ... 7 more Caused by: org.apache.flink.util.FlinkRuntimeException: Cannot have more than one execute() or executeAsync() call in a single environment. at org.apache.flink.client.program.ContextEnvironment.validateAllowedExecution(ContextEnvironment.java:142) at org.apache.flink.client.program.ContextEnvironment.executeAsync(ContextEnvironment.java:130) at org.apache.flink.client.program.ContextEnvironment.execute(ContextEnvironment.java:70) at org.apache.flink.api.java.ExecutionEnvironment.execute(ExecutionEnvironment.java:942) at com.alibaba.alink.operator.batch.BatchOperator.collect(BatchOperator.java:749) at com.alibaba.alink.operator.batch.BatchOperator.triggerLazyEvaluation(BatchOperator.java:704) ... 17 more


参考回答:

这个错误信息是由 Apache Flink 框架抛出的,指示在执行 Flink 程序时遇到了问题。错误信息中包含了多个异常堆栈,说明了错误发生的位置和原因。从提供的堆栈跟踪信息中,我们可以看到以下几个关键点:

最初的异常是org.apache.flink.runtime.rest.handler.RestHandlerException,表明在处理 REST 请求时发生了错误。

异常的根因是org.apache.flink.util.FlinkRuntimeException,错误信息为:"Could not execute application.",即无法执行应用程序。

该异常引起了org.apache.flink.client.program.ProgramInvocationException,它指出程序的主方法发生了错误,错误信息为:"Failed to collect ops data.",即收集操作数据失败。

最后,org.apache.flink.util.FlinkRuntimeException指出了具体的问题:"Cannot have more than one execute() or executeAsync() call in a single environment.",这意味着在同一个环境中不能有多于一个的execute()或executeAsync()调用。

要解决这个问题,您需要检查您的 Flink 程序代码。错误提示您在代码中可能有多个execute()或executeAsync()调用,这是不允许的。Flink 程序应该只有一个execute()调用来启动作业的执行。如果您的程序中确实有多个这样的调用,您需要重构代码,以确保只有一个调用。

此外,错误信息还提到了com.alibaba.alink.operator.batch.BatchOperator,表明您使用的是 Alibaba 的 Alink 库。您应该查看您的StreamxAlinkMain类中main方法的第55行,那里可能是引起问题的代码位置。

总的来说,您需要:

检查 Flink 程序中的execute()或executeAsync()调用,确保整个程序中只有一次调用。

审查您的main方法,特别是在报告错误的行周围的代码。

如果您在使用BatchOperator进行操作,确保您没有在不同的地方触发作业执行。

如果问题持续存在,可能需要进一步调试或查看更详细的日志来确定问题的根源。

最后,如果您对 Flink 不太熟悉,也可以考虑查阅相关文档或向社区寻求帮助


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/581075



问题五:机器学习PAI单独换哪个都报错?


机器学习PAI单独换哪个都报错?但是看这个数据和设置应该没问题的样子


参考回答:

你把 input_type 换成 OdpsInputV2 试一下 你如果想用线上配置的 processor 进行线上打分的话,最好是和 fg 结合,用 fg 输出后的结果作为输入,这个时候就应该用 rtp input

权重这一块也支持两种,可以都试一下


关于本问题的更多回答可点击原文查看:

https://developer.aliyun.com/ask/582126

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
1月前
如何看PAI产品下训练(train)模型任务的费用细节
PAI产品下训练(train)模型任务的费用细节
84 6
|
1月前
|
机器学习/深度学习 人工智能 算法
阿里云人工智能平台图像视频特征提取
本文介绍了图像与视频特征提取技术在人工智能和计算机视觉中的应用,涵盖图像质量评分、人脸属性分析、年龄分析、图像多标签打标、图文视频动态分类打标、视频质量评分及视频分类打标。通过深度学习模型如CNN和RNN,这些技术能从海量数据中挖掘有价值信息,为图像分类、目标检测、视频推荐等场景提供支持,提升分析精度与效率。
124 9
|
2月前
|
机器学习/深度学习 人工智能 算法
人工智能平台年度技术趋势
阿里云智能集团研究员林伟在年度技术趋势演讲中,分享了AI平台的五大方面进展。首先,他介绍了大规模语言模型(LLM)训练中的挑战与解决方案,包括高效故障诊断和快速恢复机制。其次,探讨了AI应用和服务的普及化,强调通过优化调度降低成本,使AI真正惠及大众。第三,提出了GreenAI理念,旨在提高AI工程效率,减少能源消耗。第四,讨论了企业级能力,确保数据和模型的安全性,并推出硬件到软件的全面安全方案。最后,介绍了整合多项核心技术的Pai Prime框架,展示了阿里云在自主可控AI核心框架下的整体布局和发展方向。
|
2月前
|
数据采集 人工智能 智能设计
首个!阿里云人工智能平台率先通过国际标准认证
首个!阿里云人工智能平台率先通过国际标准认证
108 7
|
2月前
|
人工智能 搜索推荐 决策智能
不靠更复杂的策略,仅凭和大模型训练对齐,零样本零经验单LLM调用,成为网络任务智能体新SOTA
近期研究通过调整网络智能体的观察和动作空间,使其与大型语言模型(LLM)的能力对齐,显著提升了基于LLM的网络智能体性能。AgentOccam智能体在WebArena基准上超越了先前方法,成功率提升26.6个点(+161%)。该研究强调了与LLM训练目标一致的重要性,为网络任务自动化提供了新思路,但也指出其性能受限于LLM能力及任务复杂度。论文链接:https://arxiv.org/abs/2410.13825。
70 12
|
2月前
|
机器学习/深度学习 传感器 人工智能
人工智能与机器学习:改变未来的力量####
【10月更文挑战第21天】 在本文中,我们将深入探讨人工智能(AI)和机器学习(ML)的基本概念、发展历程及其在未来可能带来的革命性变化。通过分析当前最前沿的技术和应用案例,揭示AI和ML如何正在重塑各行各业,并展望它们在未来十年的潜在影响。 ####
110 27
|
2月前
|
机器学习/深度学习 人工智能 算法
人工智能浪潮下的编程实践:构建你的第一个机器学习模型
在人工智能的巨浪中,每个人都有机会成为弄潮儿。本文将带你一探究竟,从零基础开始,用最易懂的语言和步骤,教你如何构建属于自己的第一个机器学习模型。不需要复杂的数学公式,也不必担心编程难题,只需跟随我们的步伐,一起探索这个充满魔力的AI世界。
74 12
|
2月前
|
机器学习/深度学习 人工智能 算法
探索人工智能与机器学习的融合之路
在本文中,我们将探讨人工智能(AI)与机器学习(ML)之间的紧密联系以及它们如何共同推动技术革新。我们将深入分析这两种技术的基本概念、发展历程和当前的应用趋势,同时讨论它们面临的挑战和未来的发展方向。通过具体案例研究,我们旨在揭示AI与ML结合的强大潜力,以及这种结合如何为各行各业带来革命性的变化。
57 0
|
3月前
|
机器学习/深度学习 自然语言处理
在模型训练中,如何平衡通用性和特定任务的需求
在模型训练中平衡通用性和特定任务需求是关键挑战。策略包括预训练与微调、多任务学习、结合任务无关与相关特征、选择适当架构、领域适应、数据增强、超参数调整、注意力机制、层级化训练、模型集成、利用中间表示、持续评估、避免过拟合、考虑伦理偏见、优化资源效率及收集用户反馈。这些方法有助于训练出既通用又专业的模型。
|
3月前
|
机器学习/深度学习 数据采集 人工智能
人工智能与机器学习:解锁数据洞察力的钥匙
人工智能与机器学习:解锁数据洞察力的钥匙

热门文章

最新文章

相关产品

  • 人工智能平台 PAI