Dijkstra算法在《庆余年》中的应用:范闲的皇宫之旅

简介: Dijkstra算法在《庆余年》中的应用:范闲的皇宫之旅

❤️❤️❤️ 欢迎来到我的博客。希望您能在这里找到既有价值又有趣的内容,和我一起探索、学习和成长。欢迎评论区畅所欲言、享受知识的乐趣!

期待与您一起探索技术、持续学习、一步步打怪升级 欢迎订阅本专栏❤️❤️

引言

《庆余年》是一部引人入胜的古装剧,讲述了范闲在风云变幻的朝堂与江湖中历险成长的故事。在这个复杂的世界中,范闲需要不断地做出重要的决策,要是范闲是学好算法穿越的话,可以想象能有多强,本文将通过一个情境,展示如何使用Python中的Dijkstra算法来帮助范闲找到在京城内安全抵达目的地的最短路径。

背景

好的,让我们设定一个范闲要到皇宫偷钥匙的情境,并将各个点引用《庆余年》中的真实地名。我们将范府、街市、酒楼、戏院、客栈和皇宫作为节点,并设置相应的路径距离。

地图节点及其关系

  • 范府 (起点)
  • 街市 (A)
  • 酒楼 (B)
  • 戏院 (C)
  • 客栈 (D)
  • 皇宫 (E) (终点)

路径距离

我们假设以下路径距离:

  • 范府到街市:2
  • 范府到酒楼:5
  • 街市到戏院:4
  • 街市到客栈:7
  • 酒楼到客栈:3
  • 戏院到客栈:1
  • 戏院到皇宫:3
  • 客栈到皇宫:2

情境图解

以下是这个情境的ASCII图解:

范府
     / \
   2/   \5
   /     \
街市-----酒楼
  | \     |
  |  \    |
  |  4\   |3
  |    \  |
  | 7   \ |
  |      \|
  客栈---戏院
  1\   3 / 
    \  /   
     皇宫

算法和实现步骤

好的,让我们详细介绍Dijkstra算法的算力和实现步骤,并确保结合《庆余年》的情境,清晰地展示范闲从范府到皇宫的最短路径。

Dijkstra算法简介

Dijkstra算法是一种经典的图搜索算法,用于查找图中节点之间的最短路径。它以贪心的方式逐步扩展最短路径集,直至找到目标节点。该算法适用于加权图,并要求权重为非负数。

算力分析

  • 时间复杂度:Dijkstra算法的时间复杂度取决于使用的数据结构。使用优先队列(如二叉堆)时,时间复杂度为O((V + E) log V),其中V是节点数,E是边数。
  • 空间复杂度:空间复杂度为O(V),用于存储节点的距离和优先队列。

实现步骤

  1. 初始化
  • 将起点的最短路径设置为0,其余所有节点的最短路径设置为无穷大(∞)。
  • 将所有节点标记为未访问。
  • 使用优先队列(最小堆)存储节点及其当前的最短路径。
  1. 选取当前节点
  • 从优先队列中取出当前最短路径最小的节点,作为当前节点。
  1. 更新邻居节点的最短路径
  • 对于当前节点的每一个邻居节点,计算从起点到该邻居节点的路径长度。
  • 如果计算得到的路径长度小于当前存储的路径长度,则更新该邻居节点的最短路径,并将其重新加入优先队列。
  1. 标记节点为已访问
  • 将当前节点标记为已访问。
  1. 重复步骤2-4,直到所有节点都被访问过或优先队列为空。
  2. 返回结果
  • 返回从起点到所有节点的最短路径。

Python实现Dijkstra算法

我们使用Dijkstra算法计算范闲从范府到皇宫的最短路径。

import heapq
def dijkstra(graph, start):
    # 初始化
    shortest_paths = {node: float('inf') for node in graph}
    shortest_paths[start] = 0
    priority_queue = [(0, start)]
    visited = set()
    while priority_queue:
        (current_distance, current_node) = heapq.heappop(priority_queue)
        if current_node in visited:
            continue
        visited.add(current_node)
        for neighbor, weight in graph[current_node].items():
            distance = current_distance + weight
            if distance < shortest_paths[neighbor]:
                shortest_paths[neighbor] = distance
                heapq.heappush(priority_queue, (distance, neighbor))
    return shortest_paths
# 示例图
graph = {
    '范府': {'街市': 2, '酒楼': 5},
    '街市': {'范府': 2, '戏院': 4, '客栈': 7},
    '酒楼': {'范府': 5, '客栈': 3},
    '戏院': {'街市': 4, '客栈': 1, '皇宫': 3},
    '客栈': {'街市': 7, '酒楼': 3, '戏院': 1, '皇宫': 2},
    '皇宫': {'戏院': 3, '客栈': 2}
}
# 计算最短路径
start_node = '范府'
shortest_paths = dijkstra(graph, start_node)
# 输出结果
print(f"从{start_node}出发到各节点的最短路径:")
for node, distance in shortest_paths.items():
    print(f"到{node}的最短路径是{distance}")

好的,我们将按照您提供的图进行详细的Dijkstra算法步骤解析。

算法图解

初始状态

每个节点的最短路径都设置为无穷大(∞),除了起点范府,其最短路径为0:

节点   最短路径
范府   0
街市   ∞
酒楼   ∞
戏院   ∞
客栈   ∞
皇宫   ∞

ASCII图解

以下是详细标注的ASCII图解,确保每个路径和距离准确对应:

范府
     / \
   2/   \5
   /     \
街市-----酒楼
  | \     |
  |  \    |
  |  4\   |3
  |    \  |
  | 7   \ |
  |      \|
  客栈---戏院
  1\   3 / 
    \  /   
     皇宫

详细步骤图解

步骤1:从范府(距离为0)出发,更新邻居街市和酒楼的距离。

更新后:

节点   最短路径
范府   0
街市   2
酒楼   5
戏院   ∞
客栈   ∞
皇宫   ∞

图解:

范府(0)
     / \
   2/   \5
   /     \
街市(2)  酒楼(5)
  | \     |
  |  \    |
  |  4\   |3
  |    \  |
  | 7   \ |
  |      \|
  客栈(∞)戏院(∞)
  1\   3 / 
    \  /   
     皇宫(∞)

步骤2:选择当前距离最小的未访问节点(街市),更新街市的邻居戏院和客栈的距离。

更新后:

节点   最短路径
范府   0
街市   2
酒楼   5
戏院   6 (2+4)
客栈   9 (2+7)
皇宫   ∞

图解:

范府(0)
     / \
   2/   \5
   /     \
街市(2)  酒楼(5)
  | \     |
  |  \    |
  |  4\   |3
  |    \  |
  | 7   \ |
  |      \|
  客栈(9)戏院(6)
  1\   3 / 
    \  /   
     皇宫(∞)

步骤3:选择当前距离最小的未访问节点(戏院),更新戏院的邻居客栈和皇宫的距离。

更新后:

节点   最短路径
范府   0
街市   2
酒楼   5
戏院   6
客栈   7 (6+1)
皇宫   9 (6+3)

图解:

范府(0)
     / \
   2/   \5
   /     \
街市(2)  酒楼(5)
  | \     |
  |  \    |
  |  4\   |3
  |    \  |
  | 7   \ |
  |      \|
  客栈(7)戏院(6)
  1\   3 / 
    \  /   
     皇宫(9)

步骤4:选择当前距离最小的未访问节点(客栈),更新客栈的邻居皇宫的距离。

更新后:

节点   最短路径
范府   0
街市   2
酒楼   5
戏院   6
客栈   7
皇宫   9 (7+2)

图解:

范府(0)
     / \
   2/   \5
   /     \
街市(2)  酒楼(5)
  | \     |
  |  \    |
  |  4\   |3
  |    \  |
  | 7   \ |
  |      \|
  客栈(7)戏院(6)
  1\   3 / 
    \  /   
     皇宫(9)

最终结果:从范府到各个节点的最短路径为:

从范府出发到各节点的最短路径:
到范府的最短路径是0
到街市的最短路径是2
到酒楼的最短路径是5
到戏院的最短路径是6
到客栈的最短路径是7
到皇宫的最短路径是9

通过这些步骤,范闲最终找到从范府到皇宫的最短路径为9。

结论

通过本文,我们展示了如何利用Python中的Dijkstra算法在《庆余年》中的情境下帮助范闲找到最优路径。虽然这只是一个虚构的例子,但Dijkstra算法在现实世界中的应用广泛,如交通导航、网络路由等。希望本文能帮助读者理解这一强大算法的基本原理和实现方法,并激发出更多的创意,将技术和艺术有机结合。

🌹🌹如果觉得这篇文对你有帮助的话,记得一键三连关注、赞👍🏻、收藏是对作者最大的鼓励,非常感谢 ❥(^_-)

❤️❤️作者知识有限,如有错误,请各位大佬评论区批评指正,不胜感激❥(^_-)


欢迎关注微信公众号 数据分析螺丝钉

相关文章
|
2月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
95 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
2月前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
56 3
|
1天前
|
存储 监控 算法
员工上网行为监控中的Go语言算法:布隆过滤器的应用
在信息化高速发展的时代,企业上网行为监管至关重要。布隆过滤器作为一种高效、节省空间的概率性数据结构,适用于大规模URL查询与匹配,是实现精准上网行为管理的理想选择。本文探讨了布隆过滤器的原理及其优缺点,并展示了如何使用Go语言实现该算法,以提升企业网络管理效率和安全性。尽管存在误报等局限性,但合理配置下,布隆过滤器为企业提供了经济有效的解决方案。
26 8
员工上网行为监控中的Go语言算法:布隆过滤器的应用
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的优化算法及其应用
【10月更文挑战第8天】 本文将探讨深度学习中常用的优化算法,包括梯度下降法、Adam和RMSProp等,介绍这些算法的基本原理与应用场景。通过实例分析,帮助读者更好地理解和应用这些优化算法,提高深度学习模型的训练效率与性能。
214 63
|
1天前
|
存储 缓存 算法
探索企业文件管理软件:Python中的哈希表算法应用
企业文件管理软件依赖哈希表实现高效的数据管理和安全保障。哈希表通过键值映射,提供平均O(1)时间复杂度的快速访问,适用于海量文件处理。在Python中,字典类型基于哈希表实现,可用于管理文件元数据、缓存机制、版本控制及快速搜索等功能,极大提升工作效率和数据安全性。
22 0
|
27天前
|
机器学习/深度学习 人工智能 算法
探索人工智能中的强化学习:原理、算法与应用
探索人工智能中的强化学习:原理、算法与应用
|
26天前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
43 1
|
26天前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
57 1
|
1月前
|
缓存 算法 网络协议
OSPF的路由计算算法:原理与应用
OSPF的路由计算算法:原理与应用
49 4
|
1月前
|
机器学习/深度学习 监控 算法
基于反光衣和检测算法的应用探索
本文探讨了利用机器学习和计算机视觉技术进行反光衣检测的方法,涵盖图像预处理、目标检测与分类、特征提取等关键技术。通过YOLOv5等模型的训练与优化,展示了实现高效反光衣识别的完整流程,旨在提升智能检测系统的性能,应用于交通安全、工地监控等领域。