LeetCode力扣第114题:多种算法实现 将二叉树展开为链表

简介: LeetCode力扣第114题:多种算法实现 将二叉树展开为链表

作者介绍:10年大厂数据\经营分析经验,现任大厂数据部门负责人。

会一些的技术:数据分析、算法、SQL、大数据相关、python

欢迎加入社区:码上找工作

作者专栏每日更新:

LeetCode解锁1000题: 打怪升级之旅

python数据分析可视化:企业实战案例

python源码解读

程序员必备的数学知识与应用

题目描述

给定一个二叉树,原地将它展开为一个单链表。例如,给定二叉树:

1
   / \
  2   5
 / \   \
3   4   6

展开后应该变为:

1
 \
  2
   \
    3
     \
      4
       \
        5
         \
          6

方法一:递归展开

解题步骤

  1. 如果树为空,直接返回。
  2. 递归展开左子树和右子树。
  3. 将左子树插入到右子树的位置。
  4. 将原来的右子树接到当前右子树的末端。
  5. 考虑到展开后没有左子节点,将左子节点设置为None

代码示例

class Solution:
    def flatten(self, root):
        if not root:
            return
        self.flatten(root.left)
        self.flatten(root.right)
        # 左右子树已经被拉平成一条链表
        left = root.left
        right = root.right
        # 将左子树作为右子树
        root.left = None
        root.right = left
        # 找到当前右子树(原左子树)的末端并连接原右子树
        p = root
        while p.right:
            p = p.right
        p.right = right

方法一的改进主要可以从两个方面进行:优化递归效率和空间使用。虽然基本递归方法简单直观,但它可能导致不必要的栈空间消耗,尤其是在处理非常深的树时可能会导致栈溢出。以下是几种改进策略:

改进1: 尾递归优化

虽然Python默认不支持尾递归优化,但我们可以尽可能减少递归中不必要的操作,将必要的操作移至递归调用之前执行,减少递归调用栈的深度。

改进代码示例

class Solution:
    def flatten(self, root):
        def flattenTree(node):
            if not node:
                return None
            
            # 如果节点是叶子节点,直接返回
            if not node.left and not node.right:
                return node
            
            # 递归平展左子树
            leftTail = flattenTree(node.left)
            rightTail = flattenTree(node.right)
            
            # 将左子树插入到右子树的地方
            if leftTail:
                leftTail.right = node.right
                node.right = node.left
                node.left = None
            
            # 返回最后的尾部节点
            return rightTail if rightTail else leftTail
        
        flattenTree(root)
改进2: 减少递归深度

尽可能地在每个节点处理完毕后立即释放其左子树的引用,减少Python垃圾回收器的压力,并减少递归深度。

改进代码示例

class Solution:
    def flatten(self, root):
        # Helper function to perform flatten operation
        def flattenNode(node):
            if not node:
                return None
            # Flatten the left and right subtree
            left_last = flattenNode(node.left)
            right_last = flattenNode(node.right)
            # If there is a left subtree, weave it into the right subtree
            if left_last:
                left_last.right = node.right
                node.right = node.left
                node.left = None
            # The rightmost node is needed for linking to the parent node's right subtree
            return right_last if right_last else left_last
        flattenNode(root)

方法二:迭代展开

解题步骤

  1. 使用栈来辅助迭代过程。
  2. 每次取出栈顶元素,如果有右子节点先压栈,再压左子节点。
  3. 修改每个节点的右指针指向下一个栈顶元素,左指针设置为None

代码示例

class Solution:
    def flatten(self, root):
        if not root:
            return
        
        stack = [root]
        prev = None
        
        while stack:
            curr = stack.pop()
            if prev:
                prev.right = curr
                prev.left = None
            if curr.right:
                stack.append(curr.right)
            if curr.left:
                stack.append(curr.left)
            prev = curr

方法三:寻找前驱节点

解题步骤

  1. 对于每个节点,如果左子节点不为空,找到左子树的最右节点(前驱节点)。
  2. 将原右子树接到前驱节点的右边。
  3. 将左子树移到右边,左子树置为空。
  4. 继续处理链表中的下一个节点。

代码示例

class Solution:
    def flatten(self, root):
        curr = root
        while curr:
            if curr.left:
                pre = curr.left
                while pre.right:
                    pre = pre.right
                pre.right = curr.right
                curr.right = curr.left
                curr.left = None
            curr = curr.right

算法分析

  • 时间复杂度
  • 递归展开:(O(n)),每个节点访问一次。
  • 迭代展开:(O(n)),每个节点访问一次。
  • 寻找前驱节点:(O(n)),每个节点访问一次。
  • 空间复杂度
  • 递归展开:(O(n)),递归栈的空间。
  • 迭代展开:(O(n)),使用了额外的栈。
  • 寻找前驱节点:(O(1)),原地修改,不需要额外空间。

优劣势对比

  • 递归展开
  • 优点:实现简单直观。
  • 缺点:需要额外的栈空间来处理递归。
  • 迭代展开
  • 优点:避免了递归可能导致的栈溢出。
  • 缺点:需要使用栈来存储节点。
  • 寻找前驱节点
  • 优点:不需要额外空间,空间复杂度最优。
  • 缺点:代码逻辑相对复杂,需要处理更多的指针操作。

应用示例

这种技巧在处理需要将树结构线性化处理的场景非常有用,例如在图形界面开发中,需要按特定顺序访问或显示节点信息,或者在需要频繁查找、更新结点而又不频繁修改树结构的数据库和文件系统中。

欢迎关注微信公众号 数据分析螺丝钉


相关文章
|
11月前
【力扣】-- 移除链表元素
【力扣】-- 移除链表元素
114 1
|
6月前
|
存储 算法 Java
算法系列之数据结构-二叉树
树是一种重要的非线性数据结构,广泛应用于各种算法和应用中。本文介绍了树的基本概念、常见类型(如二叉树、满二叉树、完全二叉树、平衡二叉树、B树等)及其在Java中的实现。通过递归方法实现了二叉树的前序、中序、后序和层次遍历,并展示了具体的代码示例和运行结果。掌握树结构有助于提高编程能力,优化算法设计。
153 10
 算法系列之数据结构-二叉树
|
10月前
|
算法
分享一些提高二叉树遍历算法效率的代码示例
这只是简单的示例代码,实际应用中可能还需要根据具体需求进行更多的优化和处理。你可以根据自己的需求对代码进行修改和扩展。
240 64
|
8月前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
238 3
|
9月前
|
存储 算法 Python
文件管理系统中基于 Python 语言的二叉树查找算法探秘
在数字化时代,文件管理系统至关重要。本文探讨了二叉树查找算法在文件管理中的应用,并通过Python代码展示了其实现过程。二叉树是一种非线性数据结构,每个节点最多有两个子节点。通过文件名的字典序构建和查找二叉树,能高效地管理和检索文件。相较于顺序查找,二叉树查找每次比较可排除一半子树,极大提升了查找效率,尤其适用于海量文件管理。Python代码示例包括定义节点类、插入和查找函数,展示了如何快速定位目标文件。二叉树查找算法为文件管理系统的优化提供了有效途径。
131 5
|
9月前
|
数据库
数据结构中二叉树,哈希表,顺序表,链表的比较补充
二叉搜索树,哈希表,顺序表,链表的特点的比较
数据结构中二叉树,哈希表,顺序表,链表的比较补充
|
10月前
|
存储 缓存 算法
如何提高二叉树遍历算法的效率?
选择合适的遍历算法,如按层次遍历树时使用广度优先搜索(BFS),中序遍历二叉搜索树以获得有序序列。优化数据结构,如使用线索二叉树减少空指针判断,自定义节点类增加辅助信息。利用递归与非递归的特点,避免栈溢出问题。多线程并行遍历提高速度,注意线程安全。缓存中间结果,避免重复计算。预先计算并存储信息,提高遍历效率。综合运用这些方法,提高二叉树遍历算法的效率。
227 5
|
10月前
|
存储 算法 Java
leetcode算法题-有效的括号(简单)
【11月更文挑战第5天】本文介绍了 LeetCode 上“有效的括号”这道题的解法。题目要求判断一个只包含括号字符的字符串是否有效。有效字符串需满足左括号必须用相同类型的右括号闭合,并且左括号必须以正确的顺序闭合。解题思路是使用栈数据结构,遍历字符串时将左括号压入栈中,遇到右括号时检查栈顶元素是否匹配。最后根据栈是否为空来判断字符串中的括号是否有效。示例代码包括 Python 和 Java 版本。
194 4
|
10月前
|
机器学习/深度学习 JSON 算法
二叉树遍历算法的应用场景有哪些?
【10月更文挑战第29天】二叉树遍历算法作为一种基础而重要的算法,在许多领域都有着不可或缺的应用,它为解决各种复杂的问题提供了有效的手段和思路。随着计算机科学的不断发展,二叉树遍历算法也在不断地被优化和扩展,以适应新的应用场景和需求。
428 0
|
11月前
|
存储 算法 关系型数据库
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
这篇文章主要介绍了多路查找树的基本概念,包括二叉树的局限性、多叉树的优化、B树及其变体(如2-3树、B+树、B*树)的特点和应用,旨在帮助读者理解这些数据结构在文件系统和数据库系统中的重要性和效率。
118 0
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)

热门文章

最新文章