m基于PSO粒子群优化的LDPC码NMS译码算法最优归一化参数计算和误码率matlab仿真

简介: MATLAB2022a仿真实现了基于遗传优化的NMS LDPC译码算法,优化归一化参数以提升纠错性能。NMS算法通过迭代处理低密度校验码,而PSO算法用于寻找最佳归一化因子。程序包含粒子群优化的迭代过程,根据误码率评估性能并更新解码参数。最终,展示了迭代次数与优化过程的关系,并绘制了SNR与误码率曲线。

1.算法仿真效果
matlab2022a仿真结果如下:

1.jpeg
2.jpeg

2.算法涉及理论知识概要
低密度奇偶校验码(Low-Density Parity-Check Code, LDPC码)因其优越的纠错性能和近似香农极限的潜力,在现代通信系统中扮演着重要角色。归一化最小和(Normalized Min-Sum, NMS)译码算法作为LDPC码的一种高效软译码方法,通过调整归一化因子来改善其性能。而基于遗传优化的NMS译码算法最优归一化参数计算,旨在通过进化计算策略自动寻找最佳的归一化参数,进一步提升译码性能。

   LDPC码是由稀疏校验矩阵定义的一类线性分组码。其校验矩阵H具有较低的行和列权重,这使得使用迭代算法进行译码成为可能。NMS算法是基于最小和(Min-Sum, MS)算法的改进版本,旨在减小最小和算法的过估计问题。

在NMS算法中,每个消息更新规则可以表示为:

image.png

   PSO算法由粒子群、个体最优解(pBest)和全局最优解(gBest)三部分组成。每个粒子代表一个可能的解(在这里是归一化参数),通过迭代更新自己的位置(即解码参数)来逼近全局最优解。粒子的位置xi​和速度vi​在每一代(迭代)中按如下公式更新:

image.png

应用PSO计算NMS译码最优归一化参数

初始化:随机生成一组粒子,每个粒子代表一个不同的归一化参数β的初始值。

评估:对每个粒子(归一化参数)下的NMS译码性能进行仿真,通常通过误码率(BER)作为性能指标。

更新:根据粒子的个人最优解和全局最优解更新粒子的位置和速度,通过上述PSO更新公式进行。

迭代:重复步骤2和3,直到达到预设的迭代次数或性能收敛。

3.MATLAB核心程序
```for i=1:Iter
i
for j=1:Npeop
if func_obj(x1(j,:))<pbest1(j)
p1(j,:) = x1(j,:);%变量
pbest1(j) = func_obj(x1(j,:));
end
if pbest1(j)<gbest1
g1 = p1(j,:);%变量
gbest1 = pbest1(j);
end

    v1(j,:) = Wmax*v1(j,:)+c1*rand*(p1(j,:)-x1(j,:))+c2*rand*(g1-x1(j,:));
    x1(j,:) = x1(j,:)+v1(j,:); 

    for k=1:dims
        if x1(j,k) >= Xmax
           x1(j,k) = Xmax;
        end
        if x1(j,k) <= Xmin
           x1(j,k) = Xmin;
        end
    end

    for k=1:dims
        if v1(j,k) >= Vmax
           v1(j,k) =  Vmax;
        end
        if v1(j,k) <= Vmin
           v1(j,k) =  Vmin;
        end
    end

end
Error2(i)=gbest1 

end
figure
plot(Error2,'linewidth',2);
grid on
xlabel('迭代次数');
ylabel('遗传算法优化过程');
legend('Average fitness');

.......................................................
fitness=mean(Ber);

figure
semilogy(SNR, Ber,'-b^',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.2,0.9,0.5]);

xlabel('Eb/N0(dB)');
ylabel('Ber');
title(['归一化最小和NMS,GA优化后的alpha = ',num2str(aa)])
grid on;
save NMS4.mat SNR Ber Error2 aa
0X_057m

```

相关文章
|
5天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
4天前
|
算法
基于HASM模型的高精度建模matlab仿真
本课题使用HASM进行高精度建模,介绍HASM模型及其简化实现方法。HASM模型基于层次化与自适应统计思想,通过多层结构捕捉不同尺度特征,自适应调整参数,适用于大规模、高维度数据的分析与预测。MATLAB2022A版本运行测试,展示运行结果。
|
5天前
|
运维 算法
基于Lipschitz李式指数的随机信号特征识别和故障检测matlab仿真
本程序基于Lipschitz李式指数进行随机信号特征识别和故障检测。使用MATLAB2013B版本运行,核心功能包括计算Lipschitz指数、绘制指数曲线、检测故障信号并标记异常区域。Lipschitz指数能够反映信号的局部动态行为,适用于机械振动分析等领域的故障诊断。
|
6天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
191 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
124 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
3月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
88 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
6月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
6月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)