【YOLOv8新玩法】姿态评估寻找链接切割点

简介: 【YOLOv8新玩法】姿态评估寻找链接切割点

做真正的OpenCV开发者,从入门到入职,一步到位!

前言

Hello大家好,今天给大家分享一下如何基于深度学习模型训练实现工件切割点位置预测,主要是通过对YOLOv8姿态评估模型在自定义的数据集上训练,生成一个工件切割分离点预测模型

制作数据集

本人从网络上随便找到了个工业工件,然后写代码合成了一些数据,总计数据有360张图像、其中336张作为训练集、24张作为验证集。

其中YOLOv的数据格式如下:


解释一下:

Class-index 表示对象类型索引,从0开始 后面的四个分别是对象的中心位置与宽高 xc、yc、width、height

Px1,py1表示第一个关键点坐标、p1v表示师傅可见,默认填2即可。

模型训练

跟训练YOLOv8对象检测模型类似,直接运行下面的命令行即可:

yolo train model=yolov8n-pose.pt data=mul_lines_dataset.yaml epochs=15 imgsz=640 batch=1

模型导出预测

训练完成以后模型预测推理测试 使用下面的命令行:

yolo predict model=lines_pts_best.pt source=D:\bird_test\back1\2.png

导出模型为ONNX格式,使用下面命令行即可

yolo export model=lines_pts_best.pt format=onnx

部署推理

基于ONNX格式模型,采用ONNXRUNTIME推理结果如下:

ORT相关的推理演示代码如下:

def ort_keypoint_demo():

    # initialize the onnxruntime session by loading model in CUDA support
    model_dir = "lines_pts_best.onnx"
    session = onnxruntime.InferenceSession(model_dir, providers=['CUDAExecutionProvider'])

    # 就改这里, 把RTSP的地址配到这边就好啦,然后直接运行,其它任何地方都不准改!
    # 切记把 onnx文件放到跟这个python文件同一个文件夹中!
    frame = cv.imread("D:/bird_test/back1/lines_002.png")
    bgr = format_yolov8(frame)
    fh, fw, fc = frame.shape

    start = time.time()
    image = cv.dnn.blobFromImage(bgr, 1 / 255.0, (640, 640), swapRB=True, crop=False)

    # onnxruntime inference
    ort_inputs = {session.get_inputs()[0].name: image}
    res = session.run(None, ort_inputs)[0]

    # matrix transpose from 1x8x8400 => 8400x8
    out_prob = np.squeeze(res, 0).T

    result_kypts, confidences, boxes = wrap_detection(bgr, out_prob)
    for (kpts, confidence, box) in zip(result_kypts, confidences, boxes):
        cv.rectangle(frame, box, (0, 0, 255), 2)
        cv.rectangle(frame, (box[0], box[1] - 20), (box[0] + box[2], box[1]), (0, 255, 255), -1)
        cv.putText(frame, ("%.2f" % confidence), (box[0], box[1] - 10), cv.FONT_HERSHEY_SIMPLEX, .5, (0, 0, 0))
        cx = kpts[0]
        cy = kpts[1]
        cv.circle(frame, (int(cx), int(cy)), 3, (255, 0, 255), 4, 8, 0)

    cv.imshow("Find Key Point Demo", frame)
    cv.waitKey(0)
    cv.destroyAllWindows()


if __name__ == "__main__":
    ort_keypoint_demo()

认真学习 YOLOv8 点这里。

相关文章
|
6月前
|
机器学习/深度学习 监控 算法
yolov8+多算法多目标追踪+实例分割+目标检测+姿态估计(代码+教程)
yolov8+多算法多目标追踪+实例分割+目标检测+姿态估计(代码+教程)
|
5月前
|
机器学习/深度学习 数据格式 索引
【YOLOv8新玩法】姿态评估解锁找圆心位置
【YOLOv8新玩法】姿态评估解锁找圆心位置
77 0
|
6月前
|
机器学习/深度学习 计算机视觉
YOLOv8改进 | 损失函数篇 | SlideLoss、FocalLoss分类损失函数助力细节涨点(全网最全)
YOLOv8改进 | 损失函数篇 | SlideLoss、FocalLoss分类损失函数助力细节涨点(全网最全)
657 0
|
6月前
|
机器学习/深度学习 编解码 人工智能
论文介绍:HigherHRNet——用于自下而上人体姿态估计的尺度感知表示学习
【5月更文挑战第22天】HigherHRNet是针对自下而上人体姿态估计的尺度感知方法,通过构建高分辨率特征金字塔,改善多尺度人体姿态估计的准确性。该论文提出的新架构在COCO测试集上提高了2.5%的中号人物平均精度,达到70.5%的AP,且在CrowdPose上超越所有自上而下方法,实现67.6%的AP。作者通过消融实验验证了各个组件的重要性,并指出未来可优化模型以适应更复杂场景。论文链接:[https://arxiv.org/abs/1908.10357](https://arxiv.org/abs/1908.10357)
48 1
|
5月前
|
机器学习/深度学习
【保姆级教程|YOLOv8改进】【7】多尺度空洞注意力(MSDA),DilateFormer实现暴力涨点
【保姆级教程|YOLOv8改进】【7】多尺度空洞注意力(MSDA),DilateFormer实现暴力涨点
|
6月前
|
传感器 编解码 自动驾驶
YOLO还真行 | 2D检测教3D检测做事情,YOLOv7让BEVFusion无痛涨6个点,长尾也解决了
YOLO还真行 | 2D检测教3D检测做事情,YOLOv7让BEVFusion无痛涨6个点,长尾也解决了
174 0
|
6月前
|
机器学习/深度学习 固态存储 算法
目标检测的福音 | 如果特征融合还用FPN/PAFPN?YOLOX+GFPN融合直接起飞,再涨2个点
目标检测的福音 | 如果特征融合还用FPN/PAFPN?YOLOX+GFPN融合直接起飞,再涨2个点
288 0
|
6月前
|
机器学习/深度学习 计算机视觉
YOLOv5改进 | 损失函数篇 | SlideLoss、VFLoss分类损失函数助力细节涨点(全网最全)
YOLOv5改进 | 损失函数篇 | SlideLoss、VFLoss分类损失函数助力细节涨点(全网最全)
476 0
|
6月前
|
机器学习/深度学习 算法 PyTorch
【PyTorch深度强化学习】带基线的蒙特卡洛策略梯度法(REINFOECE)在短走廊和CartPole环境下的实战(超详细 附源码)
【PyTorch深度强化学习】带基线的蒙特卡洛策略梯度法(REINFOECE)在短走廊和CartPole环境下的实战(超详细 附源码)
113 0
|
6月前
|
编解码 算法 自动驾驶
【计算机视觉】基于光流特征的目标跟踪算法LK光流法的讲解(图文解释 超详细)
【计算机视觉】基于光流特征的目标跟踪算法LK光流法的讲解(图文解释 超详细)
415 0