图像处理之积分图应用四(基于局部均值的图像二值化算法)

简介: 图像处理之积分图应用四(基于局部均值的图像二值化算法)

图像处理之积分图应用四(基于局部均值的图像二值化算法)

基本原理

均值法,选择的阈值是局部范围内像素的灰度均值(gray mean),该方法的一个变种是用常量C减去均值Mean,然后根据均值实现如下操作:

pixel = (pixel > (mean - c)) ? object : background

其中默认情况下参数C取值为0。object表示前景像素,background表示背景像素。


实现步骤

1. 彩色图像转灰度图像

2. 获取灰度图像的像素数据,预计算积分图

3. 根据输入的参数窗口半径大小从积分图中获取像素总和,求得平均值

4.循环每个像素,根据局部均值实现中心像素的二值化赋值

5.输入二值图像

运行结果:

代码实现:

package com.gloomyfish.ii.demo;

import java.awt.image.BufferedImage;

public class FastMeanBinaryFilter extends AbstractImageOptionFilter {

    private int constant;
    private int radius;
    public FastMeanBinaryFilter() {
        constant = 10;
        radius = 7; // 1,2,3,4,5,6,7,8
    }

    public int getConstant() {
        return constant;
    }

    public void setConstant(int constant) {
        this.constant = constant;
    }

    public int getRadius() {
        return radius;
    }

    public void setRadius(int radius) {
        this.radius = radius;
    }

    @Override
    public BufferedImage process(BufferedImage image) {
        int width = image.getWidth();
        int height = image.getHeight();

        BufferedImage dest = createCompatibleDestImage( image, null );
        // 图像灰度化
        int[] inPixels = new int[width*height];
        int[] outPixels = new int[width*height];
        byte[] binData = new byte[width*height];
        getRGB( image, 0, 0, width, height, inPixels );
        int index = 0;
        for(int row=0; row<height; row++) {
            int ta = 0, tr = 0, tg = 0, tb = 0;
            for(int col=0; col<width; col++) {
                index = row * width + col;
                ta = (inPixels[index] >> 24) & 0xff;
                tr = (inPixels[index] >> 16) & 0xff;
                tg = (inPixels[index] >> 8) & 0xff;
                tb = inPixels[index] & 0xff;
                int gray= (int)(0.299 *tr + 0.587*tg + 0.114*tb);
                binData[index] = (byte)gray;
            }
        }

        // per-calculate integral image
        IntIntegralImage grayii = new IntIntegralImage();
        grayii.setImage(binData);
        grayii.process(width, height);
        int yr = radius;
        int xr = radius;
        int size = (yr * 2 + 1)*(xr * 2 + 1);
        for (int row = 0; row < height; row++) {
            for (int col = 0; col < width; col++) {
                index = row * width + col;

                // 计算均值
                int sr = grayii.getBlockSum(col, row, (yr * 2 + 1), (xr * 2 + 1));
                int mean = sr / size;
                int pixel = binData[index]&0xff;

                // 二值化
                if(pixel > (mean-constant)) {
                    outPixels[row * width + col] = (0xff << 24) | (0xff << 16) | (0xff << 8) | 0xff;
                } else {
                    outPixels[row * width + col] = (0xff << 24) | (0x00 << 16) | (0x00 << 8) | 0x00;
                }
            }
        }

        // 返回结果
        setRGB(dest, 0, 0, width, height, outPixels);
        return dest;
    }


}

相关文章
|
27天前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
41 3
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的优化算法及其应用
【10月更文挑战第8天】 本文将探讨深度学习中常用的优化算法,包括梯度下降法、Adam和RMSProp等,介绍这些算法的基本原理与应用场景。通过实例分析,帮助读者更好地理解和应用这些优化算法,提高深度学习模型的训练效率与性能。
137 63
|
11天前
|
机器学习/深度学习 JSON 算法
二叉树遍历算法的应用场景有哪些?
【10月更文挑战第29天】二叉树遍历算法作为一种基础而重要的算法,在许多领域都有着不可或缺的应用,它为解决各种复杂的问题提供了有效的手段和思路。随着计算机科学的不断发展,二叉树遍历算法也在不断地被优化和扩展,以适应新的应用场景和需求。
20 0
|
22天前
|
存储 算法 搜索推荐
这些算法在实际应用中有哪些具体案例呢
【10月更文挑战第19天】这些算法在实际应用中有哪些具体案例呢
25 1
|
28天前
|
机器学习/深度学习 人工智能 算法
[大语言模型-算法优化] 微调技术-LoRA算法原理及优化应用详解
[大语言模型-算法优化] 微调技术-LoRA算法原理及优化应用详解
66 0
[大语言模型-算法优化] 微调技术-LoRA算法原理及优化应用详解
|
22天前
|
监控 算法 数据挖掘
HyperLogLog算法有哪些应用场景呢
【10月更文挑战第19天】HyperLogLog算法有哪些应用场景呢
14 0
|
28天前
|
机器学习/深度学习 算法 数据建模
计算机前沿技术-人工智能算法-生成对抗网络-算法原理及应用实践
计算机前沿技术-人工智能算法-生成对抗网络-算法原理及应用实践
25 0
|
23天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
7天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
9天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。