Time Limit: 2 second(s) | Memory Limit: 32 MB |
Goldbach's conjecture is one of the oldest unsolved problems in number theory and in all of mathematics. It states:
Every even integer, greater than 2, can be expressed as the sum of two primes [1].
Now your task is to check whether this conjecture holds for integers up to 107.
Input
Input starts with an integer T (≤ 300), denoting the number of test cases.
Each case starts with a line containing an integer n (4 ≤ n ≤ 107, n is even).
Output
For each case, print the case number and the number of ways you can express n as sum of two primes. To be more specific, we want to find the number of (a, b)where
1) Both a and b are prime
2) a + b = n
3) a ≤ b
Sample Input |
Output for Sample Input |
2 6 4 |
Case 1: 1 Case 2: 1 |
Note
1. An integer is said to be prime, if it is divisible by exactly two different integers. First few primes are 2, 3, 5, 7, 11, 13, ...
题目大意:
首先给定T组数据,让你求的是,一个>=4的偶数拆分成两个素数之和的形式能够有几对。
样例解释:
当 n = 6时,6 = 3 + 3只有一对,
当 n=10时,10 = 5 + 5 = 3 + 7(7+3)有两对所以输出3
解题思路:
就是一个素数筛,没什么说的感觉(我还错了几次),当时也不知道是怎么回事,有可能是编译器坏了,明明一样的代码,在自己这就是不能过,但是交上去就能过,真是神了,需要注意的是素数筛的时候要记录素数的值,在主函数中用到,不能直接 n/2算,会超时,最后因为我们算的是对数所以要除以2,然后再判断 n/2是不是素数,如果是+1
不是不用变,上代码:
My Code:
#include <iostream> #include <cstring> #include <cstdio> using namespace std; const int MAXN = 1e7+5; const int M = 1e6+5; typedef long long LL; int p[M]; bool prime[MAXN]; int cnt = 0; void isprime() { cnt = 0; memset(prime, true, sizeof(prime)); prime[0] = prime[1] = false; for(LL i=2; i<MAXN; i++) { if(prime[i]) { p[cnt++] = i; for(LL j=i*i; j<MAXN; j+=i) prime[j] = false; } } } int main() { isprime(); int T,n; scanf("%d",&T); for(int cas=1; cas<=T; cas++) { scanf("%d",&n); int sum = 0; for(int i=0; i<cnt&&p[i]<=n; i++) if(prime[n-p[i]]) sum++; sum >>= 1; if(prime[n/2]) sum++; printf("Case %d: %d\n",cas,sum); } return 0; }