基于GA-PSO遗传粒子群混合优化算法的CDVRP问题求解matlab仿真

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 该文介绍了车辆路径问题(Vehicle Routing Problem, VRP)中的组合优化问题CDVRP,旨在找寻满足客户需求的最优车辆路径。在MATLAB2022a中运行测试,结果显示了算法过程。核心程序运用了GA-PSO混合算法,包括粒子更新、交叉、距离计算及变异等步骤。算法原理部分详细阐述了遗传算法(GA)的编码、适应度函数、选择、交叉和变异操作,以及粒子群优化算法(PSO)的粒子表示、速度和位置更新。最后,GA-PSO混合算法结合两者的优点,通过迭代优化求解CDVRP问题。

1.程序功能描述
车辆路径问题(Vehicle Routing Problem, VRP)是运筹学领域的一个经典问题,旨在寻找满足一系列送货或取货需求的最优车辆行驶路径。其中,CDVRP是一个经典的组合优化问题,它要求确定一组最优路径,使得一定数量的车辆从起点出发,服务一系列客户点,并最终返回起点,同时满足车辆的容量限制和总行驶距离最小化的目标。

2.测试软件版本以及运行结果展示
MATLAB2022a版本运行

1.jpeg
2.jpeg

3.核心程序
...........................................

while gen <= Iters
    gen
    %粒子更新
    for i=1:Npop
        %交叉
        Pops(i,2:end-1) = func_cross(Pops(i,2:end-1),Pbest(i,2:end-1)); 
        %计算距离
Popd(i) = func_dist(Pops(i,:),Mdist,Demand,Timec,Capc);  
        if Popd(i) < Pdbest(i)  
Pbest(i,:)=Pops(i,:);  
            Pdbest(i)=Popd(i); 
        end

        %更新Gbest
        [mindis,index] = min(Pdbest); 

        if mindis<Gdbest
Gbest = Pbest(index,:); 
Gdbest = mindis;  
        end

        %粒子与Gbest交叉
        Pops(i,2:end-1)=func_cross(Pops(i,2:end-1),Gbest(2:end-1));

        %粒子变异
Popd(i) = func_dist(Pops(i,:),Mdist,Demand,Timec,Capc);  
        if Popd(i) < Pdbest(i)  
Pbest(i,:)=Pops(i,:);  
            Pdbest(i)=Popd(i);  
        end

        %变异
Pops(i,:)=func_Mut(Pops(i,:));

        % 新路径长度变短则记录至Pbest
Popd(i) = func_dist(Pops(i,:),Mdist,Demand,Timec,Capc);%最短距离
        if Popd(i) < Pdbest(i)  
Pbest(i,:)=Pops(i,:);  
            Pdbest(i)=Popd(i);  
        end

        %存储此代最短距离
        [mindis,index] = min(Pdbest);  
        %更新迭代次数
        if mindis<Gdbest
Gbest = Pbest(index,:);  
Gdbest = mindis;  
        end
    end

gbest(gen)=Gdbest;
    gen=gen+1;
end
15

4.本算法原理
在CDVRP问题中,GA-PSO混合算法的具体实现需要针对问题的特点进行相应调整。例如,在编码阶段,可以采用基于客户序列的编码方式,每个解表示为一个客户序列,表示车辆的访问顺序。适应度函数可以定义为路径总成本的倒数或负数,以最小化行驶距离为目标。遗传操作和粒子群操作需要根据问题的约束条件(如车辆容量限制)进行定制,以确保生成的解是可行的。

4.1 遗传算法(Genetic Algorithm, GA)

   遗传算法是一种模拟自然选择和遗传学机制的优化算法。在求解CVRP问题时,GA通过编码生成初始种群,然后通过选择、交叉和变异等操作不断迭代优化,最终找到近似最优解。

   编码方式:采用自然数编码,每个客户的编号代表一个基因,一条路径则由一串基因组成。
  初始种群生成:随机生成一定数量的初始路径,构成初始种群。
  适应度函数:以适应度函数来衡量每个个体的优劣。在CVRP问题中,适应度函数通常取为总行驶距离的倒数。
   选择操作:采用轮盘赌选择法,即根据每个个体的适应度值在总体适应度值中的比例来选择个体。
  交叉操作:采用部分映射交叉(PMX)或顺序交叉(OX)等方法,生成新的个体。
  变异操作:通过随机交换路径中两个客户的位置来实现变异。

4.2 粒子群优化算法(Particle Swarm Optimization, PSO)

   粒子群优化算法是一种模拟鸟群觅食行为的优化算法。在求解CVRP问题时,PSO将每个解看作一个粒子,通过不断更新粒子的速度和位置来寻找最优解。

   粒子表示:每个粒子表示一个可能的解,即一条路径。粒子的位置由路径中客户的排列顺序决定。
   速度更新公式:根据每个粒子的历史最优位置和群体最优位置来更新粒子的速度。速度更新公式为:v[i][j] = w * v[i][j] + c1 * rand() * (pbest[i][j] - x[i][j]) + c2 * rand() * (gbest[j] - x[i][j]),其中v[i][j]表示第i个粒子在第j维上的速度,x[i][j]表示第i个粒子在第j维上的位置,pbest[i][j]表示第i个粒子在第j维上的历史最优位置,gbest[j]表示群体在第j维上的最优位置,w为惯性权重,c1和c2为学习因子,rand()为随机数生成函数。
    位置更新公式:根据更新后的速度来更新粒子的位置。位置更新公式为:x[i][j] = x[i][j] + v[i][j]。需要注意的是,在更新位置时要保证新生成的路径满足CVRP问题的约束条件。

4.3 GA-PSO混合优化算法

   GA-PSO混合优化算法结合了遗传算法和粒子群优化算法的优点,通过GA的全局搜索能力和PSO的局部搜索能力来提高求解CVRP问题的效率和质量。具体步骤如下:

初始化:生成初始种群,并随机初始化粒子的位置和速度。
适应度评估:计算每个个体的适应度值。
选择操作:根据适应度值选择优秀的个体进入下一代种群。
交叉操作:对选中的个体进行交叉操作,生成新的个体。
变异操作:对新生成的个体进行变异操作。
PSO优化:将新生成的个体作为粒子群中的粒子,进行速度和位置的更新操作。同时记录每个粒子的历史最优位置和群体最优位置。
终止条件判断:判断是否达到终止条件(如达到最大迭代次数或找到满足精度要求的最优解)。若满足终止条件则结束算法;否则返回步骤2继续迭代优化。

相关文章
|
6天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
5天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
253 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
150 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
121 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
8月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
8月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
|
8月前
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)
|
8月前
|
供应链 算法
基于分布式优化的多产消者非合作博弈能量共享(Matlab代码)
基于分布式优化的多产消者非合作博弈能量共享(Matlab代码)