JVM内存结构(4)

简介: JVM内存结构

JVM内存结构(3)https://developer.aliyun.com/article/1530771

5.6 StringTable垃圾回收

-Xmx18m -XX:+PrintStringTableStatistics -XX: +PrintGCDetails -verbose:gc

摄者虚拟机参数,分别是设置虚拟机堆内存的最大值,打印字符串表的统计信息,打印垃圾回收的详细信息

桶的数量, 总占用空间等信息

类名啊,方法名啊也是以字符串常量存储

添加了一万多个对象,但是只有7千多个,因为内存不足触发垃圾回收

5.7 StringTable 性能调优

底层是一个hash表,性能和大小相关

太小的话就会容易出现hash冲突

因为StringTable是由HashTable实现的,所以可以适当增加HashTable桶的个数,来减少字符串放入串池所需要的时间

-XX:StringTableSize=xxxx
//最低为1009
  • 考虑是否将字符串对象入池
  • 可以通过intern方法减少重复入池,保证相同的地址在StringTable中只存储一份

6.直接内存

6-1 定义

  • 常见于NIO操作,用于数据缓冲区
  • 分配回收成本较高,但读写性能高
  • 不受JVM 内存回收影响

这里系统缓冲区复制到java缓冲区造成了不必要的复制

public class Demo1_9 {
    static final String FROM = "E:\\编程资料\\第三方教学视频\\youtube\\Getting Started with Spring Boot-sbPSjI4tt10.mp4";
    static final String TO = "E:\\a.mp4";
    static final int _1Mb = 1024 * 1024;
    public static void main(String[] args) {
        io(); // io 用时:1535.586957 1766.963399 1359.240226
        directBuffer(); // directBuffer 用时:479.295165 702.291454 562.56592
    }
    private static void directBuffer() {
        long start = System.nanoTime();
        try (FileChannel from = new FileInputStream(FROM).getChannel();
             FileChannel to = new FileOutputStream(TO).getChannel();
        ) {
            ByteBuffer bb = ByteBuffer.allocateDirect(_1Mb);
            while (true) {
                int len = from.read(bb);
                if (len == -1) {
                    break;
                }
                bb.flip();
                to.write(bb);
                bb.clear();
            }
        } catch (IOException e) {
            e.printStackTrace();
        }
        long end = System.nanoTime();
        System.out.println("directBuffer 用时:" + (end - start) / 1000_000.0);
    }
    private static void io() {
        long start = System.nanoTime();
        try (FileInputStream from = new FileInputStream(FROM);
             FileOutputStream to = new FileOutputStream(TO);
        ) {
            byte[] buf = new byte[_1Mb];
            while (true) {
                int len = from.read(buf);
                if (len == -1) {
                    break;
                }
                to.write(buf, 0, len);
            }
        } catch (IOException e) {
            e.printStackTrace();
        }
        long end = System.nanoTime();
        System.out.println("io 用时:" + (end - start) / 1000_000.0);
    }
}

这里是使用了directbuffer 之后的效果

操作系统画出来一片缓冲区,这片缓冲区java代码可以直接访问,这样少了一次缓冲区的复制操作

直接内存溢出是Direct buffer memory

6.2 分配和回收原理

  • 使用了Unsafe对象完成直接内存的分配和回收,并且回收需要主动调用freeMemory方法
  • ByteBuffer的实现类内部,使用Cleaner(虚引用)来监测ByteBuffer对象,一旦ByteBuffer对象被垃圾回收,那么就会由ReferenceHandler线程通过
    Cleaner的clean方法调用freeMemory来释放直接内存
/**
 * 禁用显式回收对直接内存的影响
 */
public class Demo1_26 {
    static int _1Gb = 1024 * 1024 * 1024;
    /*
     * -XX:+DisableExplicitGC 显式的
     */
    public static void main(String[] args) throws IOException {
        ByteBuffer byteBuffer = ByteBuffer.allocateDirect(_1Gb);
        System.out.println("分配完毕...");
        System.in.read();
        System.out.println("开始释放...");
        byteBuffer = null;
        System.gc(); // 显式的垃圾回收,Full GC
        System.in.read();
    }
}

直接内存的释放不能通过垃圾回收只能通过底层的unsafe对象的freeMemory方法

/**
 * 直接内存分配的底层原理:Unsafe
 */
public class Demo1_27 {
    static int _1Gb = 1024 * 1024 * 1024;
    public static void main(String[] args) throws IOException {
        Unsafe unsafe = getUnsafe();
        // 分配内存
        long base = unsafe.allocateMemory(_1Gb);
        unsafe.setMemory(base, _1Gb, (byte) 0);
        System.in.read();
        // 释放内存
        unsafe.freeMemory(base);
        System.in.read();
    }
    public static Unsafe getUnsafe() {
        try {
            Field f = Unsafe.class.getDeclaredField("theUnsafe");
            f.setAccessible(true);
            Unsafe unsafe = (Unsafe) f.get(null);
            return unsafe;
        } catch (NoSuchFieldException | IllegalAccessException e) {
            throw new RuntimeException(e);
        }
    }
}

当bytebuffer被回收时就会触发虚引用对象cleaner 中的create方法,然后会调用回调任务对象Delocator就会调用freeMemory方法

有时候我们会-XX:+DisableExplicitGC显式的 禁用显示的垃圾回收,因为这个很损耗性能,这样也会间接的让我们无法手动直接调用垃圾回收拉释放直接内存

这时候我们可以使用usafe对象来释放直接内存

(byte) 0);

System.in.read();

// 释放内存
    unsafe.freeMemory(base);
    System.in.read();
}
public static Unsafe getUnsafe() {
    try {
        Field f = Unsafe.class.getDeclaredField("theUnsafe");
        f.setAccessible(true);
        Unsafe unsafe = (Unsafe) f.get(null);
        return unsafe;
    } catch (NoSuchFieldException | IllegalAccessException e) {
        throw new RuntimeException(e);
    }
}

}

[外链图片转存中...(img-gIZ18FLN-1696576900268)]
当bytebuffer被回收时就会触发虚引用对象cleaner 中的create方法,然后会调用回调任务对象Delocator就会调用freeMemory方法
有时候我们会`-XX:+DisableExplicitGC显式的` 禁用显示的垃圾回收,因为这个很损耗性能,这样也会间接的让我们无法手动直接调用垃圾回收拉释放直接内存
这时候我们可以使用`usafe`对象来释放直接内存
相关文章
|
5天前
|
缓存 算法 关系型数据库
MySQL底层概述—1.InnoDB内存结构
本文介绍了InnoDB引擎的关键组件和机制,包括引擎架构、Buffer Pool、Page管理机制、Change Buffer、Log Buffer及Adaptive Hash Index。
152 97
MySQL底层概述—1.InnoDB内存结构
|
3月前
|
缓存 Prometheus 监控
Elasticsearch集群JVM调优设置合适的堆内存大小
Elasticsearch集群JVM调优设置合适的堆内存大小
635 1
|
4月前
|
存储 安全 Java
jvm 锁的 膨胀过程?锁内存怎么变化的
【10月更文挑战第3天】在Java虚拟机(JVM)中,`synchronized`关键字用于实现同步,确保多个线程在访问共享资源时的一致性和线程安全。JVM对`synchronized`进行了优化,以适应不同的竞争场景,这种优化主要体现在锁的膨胀过程,即从偏向锁到轻量级锁,再到重量级锁的转变。下面我们将详细介绍这一过程以及锁在内存中的变化。
55 4
|
2月前
|
存储 Java 程序员
【JVM】——JVM运行机制、类加载机制、内存划分
JVM运行机制,堆栈,程序计数器,元数据区,JVM加载机制,双亲委派模型
|
2月前
|
存储 监控 算法
深入探索Java虚拟机(JVM)的内存管理机制
本文旨在为读者提供对Java虚拟机(JVM)内存管理机制的深入理解。通过详细解析JVM的内存结构、垃圾回收算法以及性能优化策略,本文不仅揭示了Java程序高效运行背后的原理,还为开发者提供了优化应用程序性能的实用技巧。不同于常规摘要仅概述文章大意,本文摘要将简要介绍JVM内存管理的关键点,为读者提供一个清晰的学习路线图。
|
3月前
|
Java
JVM内存参数
-Xmx[]:堆空间最大内存 -Xms[]:堆空间最小内存,一般设置成跟堆空间最大内存一样的 -Xmn[]:新生代的最大内存 -xx[use 垃圾回收器名称]:指定垃圾回收器 -xss:设置单个线程栈大小 一般设堆空间为最大可用物理地址的百分之80
|
3月前
|
Java
JVM运行时数据区(内存结构)
1)虚拟机栈:每次调用方法都会在虚拟机栈中产生一个栈帧,每个栈帧中都有方法的参数、局部变量、方法出口等信息,方法执行完毕后释放栈帧 (2)本地方法栈:为native修饰的本地方法提供的空间,在HotSpot中与虚拟机合二为一 (3)程序计数器:保存指令执行的地址,方便线程切回后能继续执行代码
38 3
|
3月前
|
存储 缓存 监控
Elasticsearch集群JVM调优堆外内存
Elasticsearch集群JVM调优堆外内存
73 1
|
3月前
|
Arthas 监控 Java
JVM进阶调优系列(9)大厂面试官:内存溢出几种?能否现场演示一下?| 面试就那点事
本文介绍了JVM内存溢出(OOM)的四种类型:堆内存、栈内存、元数据区和直接内存溢出。每种类型通过示例代码演示了如何触发OOM,并分析了其原因。文章还提供了如何使用JVM命令工具(如jmap、jhat、GCeasy、Arthas等)分析和定位内存溢出问题的方法。最后,强调了合理设置JVM参数和及时回收内存的重要性。
|
3月前
|
Java Linux Windows
JVM内存
首先JVM内存限制于实际的最大物理内存,假设物理内存无限大的话,JVM内存的最大值跟操作系统有很大的关系。简单的说就32位处理器虽然可控内存空间有4GB,但是具体的操作系统会给一个限制,这个限制一般是2GB-3GB(一般来说Windows系统下为1.5G-2G,Linux系统下为2G-3G),而64bit以上的处理器就不会有限制。
36 1