基于CNN卷积神经网络的金融数据预测matlab仿真,带GUI界面,对比BP,RBF,LSTM

简介: 这是一个基于MATLAB2022A的金融数据预测仿真项目,采用GUI界面,比较了CNN、BP、RBF和LSTM四种模型。CNN和LSTM作为深度学习技术,擅长序列数据预测,其中LSTM能有效处理长序列。BP网络通过多层非线性变换处理非线性关系,而RBF网络利用径向基函数进行函数拟合和分类。项目展示了不同模型在金融预测领域的应用和优势。

1.程序功能描述
基于CNN卷积神经网络的金融数据预测matlab仿真,带GUI界面,对比BP,RBF,LSTM.

2.测试软件版本以及运行结果展示
MATLAB2022A版本运行

1.jpeg
2.jpeg
3.jpeg

3.核心程序
............................................................
```function cnnnumgradcheck(net, x, y)
epsilon = 1e-4;
er = 1e-8;
n = numel(net.layers);
for j = 1 : numel(net.ffb)
net_m = net; net_p = net;
net_p.ffb(j) = net_m.ffb(j) + epsilon;
net_m.ffb(j) = net_m.ffb(j) - epsilon;
net_m = cnnff(net_m, x); net_m = cnnbp(net_m, y);
net_p = cnnff(net_p, x); net_p = cnnbp(net_p, y);
d = (net_p.L - net_m.L) / (2 * epsilon);
e = abs(d - net.dffb(j));
if e > er
error('numerical gradient checking failed');
end
end

for i = 1 : size(net.ffW, 1)
    for u = 1 : size(net.ffW, 2)
        net_m = net; net_p = net;
        net_p.ffW(i, u) = net_m.ffW(i, u) + epsilon;
        net_m.ffW(i, u) = net_m.ffW(i, u) - epsilon;
        net_m = cnnff(net_m, x); net_m = cnnbp(net_m, y);
        net_p = cnnff(net_p, x); net_p = cnnbp(net_p, y);
        d = (net_p.L - net_m.L) / (2 * epsilon);
        e = abs(d - net.dffW(i, u));
        if e > er
            error('numerical gradient checking failed');
        end
    end
end

for l = n : -1 : 2
    if strcmp(net.layers{l}.type, 'c')
        for j = 1 : numel(net.layers{l}.a)
            net_m = net; net_p = net;
            net_p.layers{l}.b{j} = net_m.layers{l}.b{j} + epsilon;
            net_m.layers{l}.b{j} = net_m.layers{l}.b{j} - epsilon;
            net_m = cnnff(net_m, x); net_m = cnnbp(net_m, y);
            net_p = cnnff(net_p, x); net_p = cnnbp(net_p, y);
            d = (net_p.L - net_m.L) / (2 * epsilon);
            e = abs(d - net.layers{l}.db{j});
            if e > er
                error('numerical gradient checking failed');
            end
            for i = 1 : numel(net.layers{l - 1}.a)
                for u = 1 : size(net.layers{l}.k{i}{j}, 1)
                    for v = 1 : size(net.layers{l}.k{i}{j}, 2)
                        net_m = net; net_p = net;
                        net_p.layers{l}.k{i}{j}(u, v) = net_p.layers{l}.k{i}{j}(u, v) + epsilon;
                        net_m.layers{l}.k{i}{j}(u, v) = net_m.layers{l}.k{i}{j}(u, v) - epsilon;
                        net_m = cnnff(net_m, x); net_m = cnnbp(net_m, y);
                        net_p = cnnff(net_p, x); net_p = cnnbp(net_p, y);
                        d = (net_p.L - net_m.L) / (2 * epsilon);
                        e = abs(d - net.layers{l}.dk{i}{j}(u, v));
                        if e > er
                            error('numerical gradient checking failed');
                        end
                    end
                end
            end
        end
    elseif strcmp(net.layers{l}.type, 's')

    end
end

end
04_009m

```

4.本算法原理
在金融数据预测领域,深度学习技术,特别是卷积神经网络(CNN)、循环神经网络(RNN)的长短期记忆(LSTM)变体、以及传统的机器学习模型如反向传播网络(BP,通常指多层感知器MLP)和径向基函数网络(RBF),都展现出了强大的预测能力。这些模型各有特色,适用于不同类型的数据特征和预测任务。

4.1 反向传播网络(BP,多层感知器MLP)
BP网络是一种典型的前馈神经网络,通过多层非线性变换学习复杂的输入输出映射关系。对于金融数据预测,它能够捕捉到输入特征之间的非线性关系。

4.png

4.2 径向基函数网络(RBF)
RBF网络是一种局部逼近模型,常用于函数拟合和分类。在金融预测中,它通过一系列的径向基函数来逼近非线性关系。

5.png

4.3 卷积神经网络(CNN)
CNN最初设计用于图像处理,但在序列数据和时间序列预测(如金融数据)中也展现出强大能力。它通过卷积层捕捉局部特征,池化层降低维度,全连接层进行分类或回归。

6.png

4.4 长短期记忆网络(LSTM)
LSTM是一种特殊的RNN,专为长序列数据设计,解决了传统RNN梯度消失/爆炸问题,非常适合时间序列预测,如股票价格预测。

7.png

相关文章
|
20天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
|
23天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-GRU网络的数据分类识别算法matlab仿真
本项目展示了使用MATLAB2022a实现的贝叶斯优化、CNN和GRU算法优化效果。优化前后对比显著,完整代码附带中文注释及操作视频。贝叶斯优化适用于黑盒函数,CNN用于时间序列特征提取,GRU改进了RNN的长序列处理能力。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN): 从理论到实践
本文将深入浅出地介绍卷积神经网络(CNN)的工作原理,并带领读者通过一个简单的图像分类项目,实现从理论到代码的转变。我们将探索CNN如何识别和处理图像数据,并通过实例展示如何训练一个有效的CNN模型。无论你是深度学习领域的新手还是希望扩展你的技术栈,这篇文章都将为你提供宝贵的知识和技能。
145 7
|
27天前
|
机器学习/深度学习 自然语言处理 算法
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
36 1
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
探索深度学习中的卷积神经网络(CNN)及其在现代应用中的革新
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
本文旨在通过深入浅出的方式,为读者揭示卷积神经网络(CNN)的神秘面纱,并展示其在图像识别领域的实际应用。我们将从CNN的基本概念出发,逐步深入到网络结构、工作原理以及训练过程,最后通过一个实际的代码示例,带领读者体验CNN的强大功能。无论你是深度学习的初学者,还是希望进一步了解CNN的专业人士,这篇文章都将为你提供有价值的信息和启发。
|
1月前
|
机器学习/深度学习 人工智能 网络架构
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
43 1
|
27天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
|
1月前
|
机器学习/深度学习 数据采集 PyTorch
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
|
1月前
|
机器学习/深度学习 自然语言处理 PyTorch
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)