深入理解数据结构第二弹——二叉树(2)——堆排序及其时间复杂度

简介: 深入理解数据结构第二弹——二叉树(2)——堆排序及其时间复杂度

看这篇前请先把我上一篇了解一下:深入理解数据结构第一弹——二叉树(1)——堆-CSDN博客


前言:


相信很多学习数据结构的人,都会遇到一种情况,就是明明最一开始学习就学习了时间复杂度,但是在后期自己写的程序或者是做到哪个需要判断时间复杂度的题时,仍然判断不出来时间复杂度是多少,今天,我们结合我们上期学习的堆,给大家深入剖析一下时间复杂度这个概念,同时更深入的理解堆的概念,方便我们后期应用堆进行排序等。


一、堆排序

1、堆排序的大体思路

在上一篇我们已经讲过了堆是什么东西,我们已经知道堆有大堆和小堆两种形式,堆排序的想法正是借助它的这个特点诞生的,例如:

数组 { 7,8 ,3 ,5 ,1 ,9 ,5 ,4}在堆中分布为:

如图展示的是小堆,首先我们先强调一点,降序是需要小堆来解决,升序是需要大堆来解决

比如说图上这个数组,我们要求它的降序序列时,因为堆顶元素一定是堆中最小的,所以我们就可以把堆顶元素与堆尾元素进行交换,然后把堆尾元素刨除在外再进行降序排列

2、堆排序的实例讲解

堆排序与堆相比并没有什么新东西,把我前面那章看明白,这里直接把代码呈上

(除了test.c)其他的是直接从上一章搬过来的

Seqlist.h

typedef int HPDataType;
typedef struct Heap
{
  HPDataType* a;
  int sz;
  int capacity;
}HP;
 
//初始化
void HeapInit(HP* php);
//销毁
void HeapDestory(HP* php);
//插入
void HeapPush(HP* php, HPDataType x);
//删除
void HeapPop(HP* php);
//找堆顶元素
HPDataType HeapTop(HP* php);
//判断是否为空
bool HeapEmpty(HP* php);
//算个数
int HeapSize(HP* php);

test.c

//堆排序
void HeapSort(int* a, int n)
{
  //建堆——向下调整建堆O(N-log(n))
  for (int i = (n - 1 - 1) / 2; i >= 0; i--)
  {
    AdjustDown(a, n, i);
  }
  int end = n - 1;
  while (end > 0)
  {
    Swap(&a[0], &a[end]);
 
    //再调整,选出次小数
    AdjustDown(a, end, 0);
    end--;
  }
}
int main()
{
  int a[] = { 7,8,3,5,1,9,5,4 };
  HeapSort(a, sizeof(a) / sizeof(int));
  return 0;
}

Seqlist.c

//堆
//初始化
void HeapInit(HP* php)
{
  assert(php);
  php->a = NULL;
  php->capacity = 0;
  php->sz = 0;
}
//销毁
void HeapDestory(HP* php)
{
  free(php->a);
  free(php);
}
//交换
void Swap(HPDataType* p1, HPDataType* p2)
{
  HPDataType tmp = *p1;
  *p1 = *p2;
  *p2 = tmp;
}
//删除
 
//向上调整(小堆)
void AdjustUp(HPDataType* a, int child)
{
  int parent = (child - 1) / 2;
  while (child > 0)
  {
    if (a[child] < a[parent])
    {
      Swap(&a[child], &a[parent]);
 
      child = parent;
      parent = (child - 1) / 2;
    }
    else
    {
      break;
    }
  }
}
//向下调整
void AdjustDown(int* a, int n, int parent)
{
  int child = parent * 2 + 1;
  while (child<n)
  {
    if (child+1<n&&a[child + 1] < a[child])
    {
      ++child;
    }
    if (a[child] < a[parent])
    {
      Swap(&a[child], &a[parent]);
      parent = child;
      child = parent * 2 + 1;
    }
    else
    {
      break;
    }
  }
}
 
//插入
void HeapPush(HP* php, HPDataType x)
{
  assert(php);
  if (php->sz == php->capacity)
  {
    int newcapacity = php->capacity == 0 ? 4 : php->capacity * 2;
    HPDataType* tmp = (HPDataType*)realloc(php->a, sizeof(HPDataType) * newcapacity);
    php->a = tmp;
    php->capacity = newcapacity;
  }
  php->a[php->sz] = x;
  php->sz++;
 
  //向上调整
  AdjustUp(php->a, php->sz - 1);
}
//删除
void HeapPop(HP* php)
{
  assert(php);
  assert(!HeapEmpty(php));
  Swap(&php->a[0], &php->a[php->sz - 1]);
  php->sz--;
  //向下调整
  AdjustDown(php->a, php->sz,0);
}
//判断是否为空
bool HeapEmpty(HP* php)
{
  assert(php);
  return php->sz == 0;
}
//找堆顶元素
HPDataType HeapTop(HP* php)
{
  assert(php);
  assert(!HeapEmpty(php));
  return php->a[0];
}
//算个数
int HeapSize(HP* php)
{
  assert(php);
  return php->sz;
}

实现上述代码,我们就可以实现堆排序了

二、堆排序的时间复杂度

我们都知道在实现堆时有向上排序和向下排序两种,细心的人可能已经注意到,我在实现上面那个堆排序用例时,用的是向下排序,原因就是向下排序的时间复杂度更低,接下来,我们就来分析一下这两种排序各自的时间复杂度

向下排序的时间复杂度

向上排序的时间复杂度

堆排序整体的时间复杂度

计算堆排序整体的时间复杂度就是计算上面这两步的时间复杂度

第一步:

因为这一步实际上就是多次向下调整建堆,所以这一步时间复杂度就是向下调整法时间复杂度的倍数,那根据渐进表示法就可以表示为O(N-log(N)),因为当N很大时,log(N)比N小很多,所以可以忽略表示为O(N)

第二步:

第二步外循环需要N次,内循环看似每次都是一个完整的向下排序法,但其实随着循环次数的增加,里面向下排序的时间复杂度在不断减小,因为堆尾排过去的数字实际上就不用再参与堆排序的,所以这一步时间复杂度实际上是O(N*log)

因此,堆排序的时间复杂度为O(N+N*log(N))

总结

堆排序及其时间复杂度的讲解就到此为止了,如果有不理解的地方欢迎在评论区中指出或者与我私信交流,欢迎各位大佬来访!!!

创作不易,还请各位大佬点赞支持!!!

相关文章
|
1月前
|
机器学习/深度学习 存储 算法
数据结构实验之二叉树实验基础
本实验旨在掌握二叉树的基本特性和遍历算法,包括先序、中序、后序的递归与非递归遍历方法。通过编程实践,加深对二叉树结构的理解,学习如何计算二叉树的深度、叶子节点数等属性。实验内容涉及创建二叉树、实现各种遍历算法及求解特定节点数量。
81 4
|
1月前
|
C语言
【数据结构】二叉树(c语言)(附源码)
本文介绍了如何使用链式结构实现二叉树的基本功能,包括前序、中序、后序和层序遍历,统计节点个数和树的高度,查找节点,判断是否为完全二叉树,以及销毁二叉树。通过手动创建一棵二叉树,详细讲解了每个功能的实现方法和代码示例,帮助读者深入理解递归和数据结构的应用。
131 8
|
2月前
|
存储 算法 关系型数据库
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
这篇文章主要介绍了多路查找树的基本概念,包括二叉树的局限性、多叉树的优化、B树及其变体(如2-3树、B+树、B*树)的特点和应用,旨在帮助读者理解这些数据结构在文件系统和数据库系统中的重要性和效率。
31 0
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
|
2月前
|
算法 搜索推荐
数据结构与算法学习十八:堆排序
这篇文章介绍了堆排序是一种通过构建堆数据结构来实现的高效排序算法,具有平均和最坏时间复杂度为O(nlogn)的特点。
75 0
数据结构与算法学习十八:堆排序
|
2月前
|
存储 算法 搜索推荐
数据结构与算法学习十七:顺序储存二叉树、线索化二叉树
这篇文章主要介绍了顺序存储二叉树和线索化二叉树的概念、特点、实现方式以及应用场景。
35 0
数据结构与算法学习十七:顺序储存二叉树、线索化二叉树
|
2月前
|
算法
[数据结构] -- 时间复杂度和空间复杂度
[数据结构] -- 时间复杂度和空间复杂度
19 0
|
2月前
|
存储 算法
探索数据结构:分支的世界之二叉树与堆
探索数据结构:分支的世界之二叉树与堆
|
1月前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
187 9
|
1月前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
32 1
|
24天前
|
存储 缓存 算法
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式
在C语言中,数据结构是构建高效程序的基石。本文探讨了数组、链表、栈、队列、树和图等常见数据结构的特点、应用及实现方式,强调了合理选择数据结构的重要性,并通过案例分析展示了其在实际项目中的应用,旨在帮助读者提升编程能力。
44 5