MySQL调优之索引:索引的失效与优化

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS PostgreSQL,集群系列 2核4GB
简介: MySQL调优之索引:索引的失效与优化

MySQL索引存储结构

索引是优化数据库查询最重要的方式之一,它是在MySQL的存储引擎层中实现的,所以每一种存储引擎对应的索引不一定相同。我们可以通过下面这张表格,看看不同的存储引擎分别支持哪种索引类型:

B+Tree索引和Hash索引是我们比较常用的两个索引数据存储结构,B+Tree索引是通过B+树实现的,是有序排列存储,所以在排序和范围查找方面都比较有优势。如果你对B+Tree索引不够了解,可以通过该链接了解下它的数据结构原理。

Hash索引相对简单些,只有Memory存储引擎支持Hash索引。Hash索引适合key-value键值对查询,无论表数据多大,查询数据的复杂度都是O(1),且直接通过Hash索引查询的性能比其它索引都要优越。

在创建表时,无论使用InnoDB还是MyISAM存储引擎,默认都会创建一个主键索引,而创建的主键索引默认使用的是B+Tree索引。不过虽然这两个存储引擎都支持B+Tree索引,但它们在具体的数据存储结构方面却有所不同。

InnoDB默认创建的主键索引是聚簇索引(Clustered Index),其它索引都属于辅助索引(Secondary Index),也被称为二级索引或非聚簇索引。接下来我们通过一个简单的例子,说明下这两种索引在存储数据中的具体实现。

首先创建一张商品表,如下:

CREATE TABLE `merchandise`  (
  `id` int(11) NOT NULL,
  `serial_no` varchar(20)  DEFAULT NULL,
  `name` varchar(255) DEFAULT NULL,
  `unit_price` decimal(10, 2) DEFAULT NULL,
  PRIMARY KEY (`id`) USING BTREE
) CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Dynamic;

然后新增了以下几行数据,如下:

如果我们使用的是MyISAM存储引擎,由于MyISAM使用的是辅助索引,索引中每一个叶子节点仅仅记录的是每行数据的物理地址,即行指针,如下图所示:

如果我们使用的是InnoDB存储引擎,由于InnoDB使用的是聚簇索引,聚簇索引中的叶子节点则记录了主键值、事务id、用于事务和MVCC的回流指针以及所有的剩余列,如下图所示:

基于上面的图示,如果我们需要根据商品编码查询商品,我们就需要将商品编码serial_no列作为一个索引列。此时创建的索引是一个辅助索引,与MyISAM存储引擎的主键索引的存储方式是一致的,但叶子节点存储的就不是行指针了,而是主键值,并以此来作为指向行的指针。这样的好处就是当行发生移动或者数据分裂时,不用再维护索引的变更。

如果我们使用主键索引查询商品,则会按照B+树的索引找到对应的叶子节点,直接获取到行数据:

select * from merchandise where id=7

如果我们使用商品编码查询商品,即使用辅助索引进行查询,则会先检索辅助索引中的B+树的serial_no,找到对应的叶子节点,获取主键值,然后再通过聚簇索引中的B+树检索到对应的叶子节点,然后获取整行数据。这个过程叫做回表。

在了解了索引的实现原理后,我们再来详细了解下平时建立和使用索引时,都有哪些调优方法呢?

1.覆盖索引优化查询

假设我们只需要查询商品的名称、价格信息,我们有什么方式来避免回表呢?我们可以建立一个组合索引,即商品编码、名称、价格作为一个组合索引。如果索引中存在这些数据,查询将不会再次检索主键索引,从而避免回表。

从辅助索引中查询得到记录,而不需要通过聚簇索引查询获得,MySQL中将其称为覆盖索引。使用覆盖索引的好处很明显,我们不需要查询出包含整行记录的所有信息,因此可以减少大量的I/O操作。

通常在InnoDB中,除了查询部分字段可以使用覆盖索引来优化查询性能之外,统计数量也会用到。例如,在第32讲我们讲 SELECT COUNT(*)时,如果不存在辅助索引,此时会通过查询聚簇索引来统计行数,如果此时正好存在一个辅助索引,则会通过查询辅助索引来统计行数,减少I/O操作。

通过EXPLAIN,我们可以看到 InnoDB 存储引擎使用了idx_order索引列来统计行数,如下图所示:

2.自增字段作主键优化查询

上面我们讲了 InnoDB 创建主键索引默认为聚簇索引,数据被存放在了B+树的叶子节点上。也就是说,同一个叶子节点内的各个数据是按主键顺序存放的,因此,每当有一条新的数据插入时,数据库会根据主键将其插入到对应的叶子节点中。

如果我们使用自增主键,那么每次插入的新数据就会按顺序添加到当前索引节点的位置,不需要移动已有的数据,当页面写满,就会自动开辟一个新页面。因为不需要重新移动数据,因此这种插入数据的方法效率非常高。

如果我们使用非自增主键,由于每次插入主键的索引值都是随机的,因此每次插入新的数据时,就可能会插入到现有数据页中间的某个位置,这将不得不移动其它数据来满足新数据的插入,甚至需要从一个页面复制数据到另外一个页面,我们通常将这种情况称为页分裂。页分裂还有可能会造成大量的内存碎片,导致索引结构不紧凑,从而影响查询效率。

因此,在使用InnoDB存储引擎时,如果没有特别的业务需求,建议使用自增字段作为主键。

3.前缀索引优化

前缀索引顾名思义就是使用某个字段中字符串的前几个字符建立索引,那我们为什么需要使用前缀来建立索引呢?

我们知道,索引文件是存储在磁盘中的,而磁盘中最小分配单元是页,通常一个页的默认大小为16KB,假设我们建立的索引的每个索引值大小为2KB,则在一个页中,我们能记录8个索引值,假设我们有8000行记录,则需要1000个页来存储索引。如果我们使用该索引查询数据,可能需要遍历大量页,这显然会降低查询效率。

减小索引字段大小,可以增加一个页中存储的索引项,有效提高索引的查询速度。在一些大字符串的字段作为索引时,使用前缀索引可以帮助我们减小索引项的大小。

不过,前缀索引是有一定的局限性的,例如order by就无法使用前缀索引,无法把前缀索引用作覆盖索引。

4.防止索引失效

当我们习惯建立索引来实现查询SQL的性能优化后,是不是就万事大吉了呢?当然不是,有时候我们看似使用到了索引,但实际上并没有被优化器选择使用。

对于Hash索引实现的列,如果使用到范围查询,那么该索引将无法被优化器使用到。也就是说Memory引擎实现的Hash索引只有在“=”的查询条件下,索引才会生效。我们将order表设置为Memory存储引擎,分析查询条件为id<10的SQL,可以发现没有使用到索引。

如果是以%开头的LIKE查询将无法利用节点查询数据:

当我们在使用复合索引时,需要使用索引中的最左边的列进行查询,才能使用到复合索引。例如我们在order表中建立一个复合索引idx_user_order_status(order_no, status, user_id),如果我们使用order_no、order_no+status、order_no+status+user_id以及order_no+user_id组合查询,则能利用到索引;而如果我们用status、status+user_id查询,将无法使用到索引,这也是我们经常听过的最左匹配原则。

如果查询条件中使用or,且or的前后条件中有一个列没有索引,那么涉及的索引都不会被使用到。

总结

在大多数情况下,我们习惯使用默认的 InnoDB 作为表存储引擎。在使用InnoDB作为存储引擎时,创建的索引默认为B+树数据结构,如果是主键索引,则属于聚簇索引,非主键索引则属于辅助索引。基于主键查询可以直接获取到行信息,而基于辅助索引作为查询条件,则需要进行回表,然后再通过主键索引获取到数据。

如果只是查询一列或少部分列的信息,我们可以基于覆盖索引来避免回表。覆盖索引只需要读取索引,且由于索引是顺序存储,对于范围或排序查询来说,可以极大地极少磁盘I/O操作。

除了了解索引的具体实现和一些特性,我们还需要注意索引失效的情况发生。如果觉得这些规则太多,难以记住,我们就要养成经常检查SQL执行计划的习惯。

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
17天前
|
SQL 关系型数据库 MySQL
深入解析MySQL的EXPLAIN:指标详解与索引优化
MySQL 中的 `EXPLAIN` 语句用于分析和优化 SQL 查询,帮助你了解查询优化器的执行计划。本文详细介绍了 `EXPLAIN` 输出的各项指标,如 `id`、`select_type`、`table`、`type`、`key` 等,并提供了如何利用这些指标优化索引结构和 SQL 语句的具体方法。通过实战案例,展示了如何通过创建合适索引和调整查询语句来提升查询性能。
118 9
|
1天前
|
存储 关系型数据库 MySQL
MySQL中为什么要使用索引合并(Index Merge)?
通过这些内容的详细介绍和实际案例分析,希望能帮助您深入理解索引合并及其在MySQL中的
17 10
|
21天前
|
缓存 关系型数据库 MySQL
MySQL 索引优化以及慢查询优化
通过本文的介绍,希望您能够深入理解MySQL索引优化和慢查询优化的方法,并在实际应用中灵活运用这些技术,提升数据库的整体性能。
61 18
|
14天前
|
存储 Oracle 关系型数据库
索引在手,查询无忧:MySQL索引简介
MySQL 是一款广泛使用的关系型数据库管理系统,在2024年5月的DB-Engines排名中得分1084,仅次于Oracle。本文介绍MySQL索引的工作原理和类型,包括B+Tree、Hash、Full-text索引,以及主键、唯一、普通索引等,帮助开发者优化查询性能。索引类似于图书馆的分类系统,能快速定位数据行,极大提高检索效率。
48 8
|
20天前
|
缓存 关系型数据库 MySQL
MySQL 索引优化以及慢查询优化
通过本文的介绍,希望您能够深入理解MySQL索引优化和慢查询优化的方法,并在实际应用中灵活运用这些技术,提升数据库的整体性能。
22 7
|
19天前
|
缓存 关系型数据库 MySQL
MySQL 索引优化与慢查询优化:原理与实践
通过本文的介绍,希望您能够深入理解MySQL索引优化与慢查询优化的原理和实践方法,并在实际项目中灵活运用这些技术,提升数据库的整体性能。
51 5
|
23天前
|
存储 关系型数据库 MySQL
Mysql索引:深入理解InnoDb聚集索引与MyisAm非聚集索引
通过本文的介绍,希望您能深入理解InnoDB聚集索引与MyISAM非聚集索引的概念、结构和应用场景,从而在实际工作中灵活运用这些知识,优化数据库性能。
100 7
|
9天前
|
存储 关系型数据库 MySQL
【MYSQL】 ——索引(B树B+树)、设计栈
索引的特点,使用场景,操作,底层结构,B树B+树,MYSQL设计栈
|
11天前
|
存储 Oracle 关系型数据库
数据库传奇:MySQL创世之父的两千金My、Maria
《数据库传奇:MySQL创世之父的两千金My、Maria》介绍了MySQL的发展历程及其分支MariaDB。MySQL由Michael Widenius等人于1994年创建,现归Oracle所有,广泛应用于阿里巴巴、腾讯等企业。2009年,Widenius因担心Oracle收购影响MySQL的开源性,创建了MariaDB,提供额外功能和改进。维基百科、Google等已逐步替换为MariaDB,以确保更好的性能和社区支持。掌握MariaDB作为备用方案,对未来发展至关重要。
39 3
|
11天前
|
安全 关系型数据库 MySQL
MySQL崩溃保险箱:探秘Redo/Undo日志确保数据库安全无忧!
《MySQL崩溃保险箱:探秘Redo/Undo日志确保数据库安全无忧!》介绍了MySQL中的三种关键日志:二进制日志(Binary Log)、重做日志(Redo Log)和撤销日志(Undo Log)。这些日志确保了数据库的ACID特性,即原子性、一致性、隔离性和持久性。Redo Log记录数据页的物理修改,保证事务持久性;Undo Log记录事务的逆操作,支持回滚和多版本并发控制(MVCC)。文章还详细对比了InnoDB和MyISAM存储引擎在事务支持、锁定机制、并发性等方面的差异,强调了InnoDB在高并发和事务处理中的优势。通过这些机制,MySQL能够在事务执行、崩溃和恢复过程中保持
41 3