【经典算法】 leetcode88.合并排序的数组(Java/C/Python3实现含注释说明,Easy)

简介: 【经典算法】 leetcode88.合并排序的数组(Java/C/Python3实现含注释说明,Easy)

题目描述

给你两个按 非递减顺序 排列的整数数组 nums1 和 nums2,另有两个整数 m 和 n ,分别表示 nums1 和 nums2 中的元素数目。
请你 合并 nums2 到 nums1 中,使合并后的数组同样按 非递减顺序 排列。
注意:最终,合并后数组不应由函数返回,而是存储在数组 nums1 中。为了应对这种情况,nums1 的初始长度为 m + n,其中前 m 个元素表示应合并的元素,后 n 个元素为 0 ,应忽略。nums2 的长度为 n 。
 
示例 1:
输入:nums1 = [1,2,3,0,0,0], m = 3, nums2 = [2,5,6], n = 3
输出:[1,2,2,3,5,6]
解释:需要合并 [1,2,3] 和 [2,5,6] 。
合并结果是 [1,2,2,3,5,6] ,其中斜体加粗标注的为 nums1 中的元素。
示例 2:
输入:nums1 = [1], m = 1, nums2 = [], n = 0
输出:[1]
解释:需要合并 [1] 和 [] 。
合并结果是 [1] 。
示例 3:
输入:nums1 = [0], m = 0, nums2 = [1], n = 1
输出:[1]
解释:需要合并的数组是 [] 和 [1] 。
合并结果是 [1] 。
注意,因为 m = 0 ,所以 nums1 中没有元素。nums1 中仅存的 0 仅仅是为了确保合并结果可以顺利存放到 nums1 中。
 
提示:
nums1.length == m + n
nums2.length == n
0 <= m, n <= 200
1 <= m + n <= 200
-109 <= nums1[i], nums2[j] <= 109
 
进阶:你可以设计实现一个时间复杂度为 O(m + n) 的算法解决此问题吗?

原题:LeetCode 88

思路及实现

方式一:从后向前双指针

思路

我们可以使用双指针,分别从两个数组的末尾开始,将较大的数依次放入 nums1 的末尾。因为 nums1 的空间足够大,所以可以直接将 nums2 中的元素放入 nums1 中。当 nums2 的指针到达末尾时,nums1 中剩下的元素就无需移动了,因为它们已经是排好序的。

代码实现

Java版本
public void merge(int[] nums1, int m, int[] nums2, int n) {
    int i = m - 1; // nums1 有效元素末尾指针
    int j = n - 1; // nums2 末尾指针
    int k = m + n - 1; // 合并后数组末尾指针
    
    while (j >= 0) {
        if (i >= 0 && nums1[i] > nums2[j]) {
            nums1[k--] = nums1[i--];
        } else {
            nums1[k--] = nums2[j--];
        }
    }
}

说明:

  • 初始化三个指针,i 指向 nums1 的有效元素末尾,j 指向 nums2 的末尾,k 指向合并后数组的末尾。
  • 当 j >= 0 时,说明 nums2 中还有元素未处理,继续循环。
  • 比较 nums1[i] 和 nums2[j] 的大小,将较大的数放入 nums1[k],并将对应指针前移。
  • 循环结束后,nums1 中的元素已经是合并后的排序数组。
C语言版本
void merge(int* nums1, int nums1Size, int m, int* nums2, int nums2Size, int n){
    int i = m - 1;
    int j = n - 1;
    int k = m + n - 1;
    
    while (j >= 0) {
        if (i >= 0 && nums1[i] > nums2[j]) {
            nums1[k--] = nums1[i--];
        } else {
            nums1[k--] = nums2[j--];
        }
    }
}

说明:

  • C语言版本的实现与 Java 版本类似,只是参数传递和数组访问的方式略有不同。
Python3版本
def merge(nums1: List[int], m: int, nums2: List[int], n: int) -> None:
    i = m - 1
    j = n - 1
    k = m + n - 1
    
    while j >= 0:
        if i >= 0 and nums1[i] > nums2[j]:
            nums1[k] = nums1[i]
            i -= 1
        else:
            nums1[k] = nums2[j]
            j -= 1
        k -= 1

说明:

  • Python 版本的实现逻辑与 Java 和 C 版本相同,只是语法上有些差异。

复杂度分析

  • 时间复杂度:O(m + n),其中 m 和 n 分别是 nums1 和 nums2 的长度。需要遍历两个数组中的所有元素。
  • 空间复杂度:O(1),除了原数组 nums1 外,没有使用额外的空间。

方式二:从前往后双指针(需要额外空间)

思路

我们创建一个新的数组 temp,其长度为 m + n(即 nums1nums2 合并后的长度)。然后,我们使用两个指针分别遍历 nums1nums2,将较小的元素依次放入 temp 数组中,直到其中一个数组遍历完。最后,将另一个数组中剩余的元素(如果有的话)直接复制到 temp 数组的末尾。最后,将 temp 数组的内容复制回 nums1

代码实现

Java版本
public void merge(int[] nums1, int m, int[] nums2, int n) {
    int[] temp = new int[m + n];
    int i = 0, j = 0, k = 0;
    
    while (i < m && j < n) {
        if (nums1[i] <= nums2[j]) {
            temp[k++] = nums1[i++];
        } else {
            temp[k++] = nums2[j++];
        }
    }
    
    while (i < m) {
        temp[k++] = nums1[i++];
    }
    
    while (j < n) {
        temp[k++] = nums2[j++];
    }
    
    // 将 temp 数组的内容复制回 nums1
    for (i = 0; i < m + n; i++) {
        nums1[i] = temp[i];
    }
}

说明:

  • 初始化三个指针 ijk,分别用于遍历 nums1nums2 和填充 temp 数组。
  • 使用 while 循环比较 nums1[i]nums2[j] 的大小,将较小的数放入 temp[k] 中,并移动对应的指针。
  • 当其中一个数组遍历完后,将另一个数组中剩余的元素直接复制到 temp 数组的末尾。
  • 最后,将 temp 数组的内容复制回 nums1
C语言版本
void merge(int* nums1, int nums1Size, int m, int* nums2, int nums2Size, int n) {
    int* temp = (int*)malloc((m + n) * sizeof(int));
    int i = 0, j = 0, k = 0;
    
    while (i < m && j < n) {
        if (nums1[i] <= nums2[j]) {
            temp[k++] = nums1[i++];
        } else {
            temp[k++] = nums2[j++];
        }
    }
    
    while (i < m) {
        temp[k++] = nums1[i++];
    }
    
    while (j < n) {
        temp[k++] = nums2[j++];
    }
    
    // 将 temp 数组的内容复制回 nums1
    for (i = 0; i < m + n; i++) {
        nums1[i] = temp[i];
    }
    
    free(temp); // 释放临时数组的空间
}

说明:

  • C语言版本与 Java 版本逻辑相似,但需要注意内存分配和释放。使用 malloc 分配临时数组 temp 的空间,并在使用完毕后使用 free 释放空间。
Python3版本
from typing import List
def merge(nums1: List[int], m: int, nums2: List[int], n: int) -> None:
    temp = [0] * (m + n)
    i, j, k = 0, 0, 0
    
    while i < m and j < n:
        if nums1[i] <= nums2[j]:
            temp[k] = nums1[i]
            i += 1
        else:
            temp[k] = nums2[j]
            j += 1
        k += 1
    
    while i < m:
        temp[k] = nums1[i]
        i += 1
        k += 1
    
    while j < n:
        temp[k] = nums2[j]
        j += 1
        k += 1
    
    # 将 temp 数组的内容复制回nums1
    for i in range(m + n):
    nums1[i] = temp[i]

说明:

  • Python版本使用了列表(List)作为数组,其动态分配内存的特性使得我们无需手动管理内存。
  • 逻辑与其他版本类似,都是将较小的元素依次放入临时数组 temp 中,然后将 temp 的内容复制回 nums1

复杂度分析

  • 时间复杂度:O(m + n),其中 m 和 n 分别是 nums1nums2 的长度。我们需要遍历两个数组的所有元素,并将它们放入临时数组 temp 中,最后再复制回 nums1
  • 空间复杂度:O(m + n),我们需要一个额外的数组 temp 来存储合并后的结果。这个数组的长度是 m + n。

虽然这种方法使用了额外的空间,但它简化了问题,因为我们可以专注于合并两个数组,而无需考虑如何在原地修改 nums1 来容纳 nums2 的元素。在实际应用中,根据具体的性能需求和内存限制,可以选择使用原地修改或者额外空间的方法。

总结

解题方式 优点 缺点 时间复杂度 空间复杂度 其他注意事项
从前往后双指针(原地修改) 无需额外空间,原地修改 逻辑相对复杂,需要正确处理合并细节 O(m + n) O(1) 需要确保 nums1 有足够空间
从前往后双指针(需要额外空间) 逻辑简单,易于理解 需要额外空间存放合并结果 O(m + n) O(m + n) 适用于空间限制不严格的情况

这两种方式都是解决合并两个有序数组问题的有效方法。选择哪种方式取决于具体的性能要求和内存限制。如果内存空间有限,或者希望避免额外的空间开销,可以选择原地修改的方式。如果内存限制不严格,或者希望简化代码逻辑,可以选择使用额外空间的方式。在编写代码时,还需要注意处理边界情况,确保代码的正确性和健壮性。

相似题目

相似题目 难度 链接
两个数组的交集 简单 leetcode-349
两个数组的交集 II 简单 leetcode-350
合并两个有序数组 简单 leetcode-88
合并两个有序链表 中等 leetcode-21
合并K个排序链表 困难 leetcode-23
有序链表转换有序数组 中等 leetcode-148
有序数组的三数之和 中等 leetcode-33
在排序数组中查找元素的第一个和最后一个位置 中等 leetcode-34

这些题目涉及了数组和链表的合并、排序和查找操作,其中一些题目与题目“合并两个有序数组”有类似的解题思路或要求。通过练习这些题目,可以加深对数组和链表操作的理解,提高算法设计和实现的能力。

相关文章
|
19天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
212 55
|
7天前
|
存储 缓存 监控
局域网屏幕监控系统中的Python数据结构与算法实现
局域网屏幕监控系统用于实时捕获和监控局域网内多台设备的屏幕内容。本文介绍了一种基于Python双端队列(Deque)实现的滑动窗口数据缓存机制,以处理连续的屏幕帧数据流。通过固定长度的窗口,高效增删数据,确保低延迟显示和存储。该算法适用于数据压缩、异常检测等场景,保证系统在高负载下稳定运行。 本文转载自:https://www.vipshare.com
102 66
|
2月前
|
存储 搜索推荐 Python
用 Python 实现快速排序算法。
快速排序的平均时间复杂度为$O(nlogn)$,空间复杂度为$O(logn)$。它在大多数情况下表现良好,但在某些特殊情况下可能会退化为最坏情况,时间复杂度为$O(n^2)$。你可以根据实际需求对代码进行调整和修改,或者尝试使用其他优化策略来提高快速排序的性能
128 61
|
29天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
155 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
4天前
|
算法 网络协议 Python
探秘Win11共享文件夹之Python网络通信算法实现
本文探讨了Win11共享文件夹背后的网络通信算法,重点介绍基于TCP的文件传输机制,并提供Python代码示例。Win11共享文件夹利用SMB协议实现局域网内的文件共享,通过TCP协议确保文件传输的完整性和可靠性。服务器端监听客户端连接请求,接收文件请求并分块发送文件内容;客户端则连接服务器、接收数据并保存为本地文件。文中通过Python代码详细展示了这一过程,帮助读者理解并优化文件共享系统。
|
9天前
|
存储 算法 Python
文件管理系统中基于 Python 语言的二叉树查找算法探秘
在数字化时代,文件管理系统至关重要。本文探讨了二叉树查找算法在文件管理中的应用,并通过Python代码展示了其实现过程。二叉树是一种非线性数据结构,每个节点最多有两个子节点。通过文件名的字典序构建和查找二叉树,能高效地管理和检索文件。相较于顺序查找,二叉树查找每次比较可排除一半子树,极大提升了查找效率,尤其适用于海量文件管理。Python代码示例包括定义节点类、插入和查找函数,展示了如何快速定位目标文件。二叉树查找算法为文件管理系统的优化提供了有效途径。
41 5
|
9天前
|
存储 缓存 算法
探索企业文件管理软件:Python中的哈希表算法应用
企业文件管理软件依赖哈希表实现高效的数据管理和安全保障。哈希表通过键值映射,提供平均O(1)时间复杂度的快速访问,适用于海量文件处理。在Python中,字典类型基于哈希表实现,可用于管理文件元数据、缓存机制、版本控制及快速搜索等功能,极大提升工作效率和数据安全性。
43 0
|
10天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
143 80
|
3天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
6天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。