【经典算法】LeetCode25:K 个一组翻转链表(Java/C/Python3,Hard)

简介: 【经典算法】LeetCode25:K 个一组翻转链表(Java/C/Python3,Hard)

题目描述

给你链表的头节点 head ,每 k 个节点一组进行翻转,请你返回修改后的链表。

k 是一个正整数,它的值小于或等于链表的长度。如果节点总数不是 k 的整数倍,那么请将最后剩余的节点保持原有顺序。

你不能只是单纯的改变节点内部的值,而是需要实际进行节点交换。

示例 1:

输入:head = [1,2,3,4,5], k = 2

输出:[2,1,4,3,5]

示例 2:

输入:head = [1,2,3,4,5], k = 3

输出:[3,2,1,4,5]

提示:

链表中的节点数目为 n

1 <= k <= n <= 5000

0 <= Node.val <= 1000

进阶:你可以设计一个只用 O(1) 额外内存空间的算法解决此问题吗?

原题:LeetCode 25

思路及实现

方式一:递归

思路

其大致过程可以分解为

  1. 找到待翻转的k个节点(注意:若剩余数量小于 k 的话,则不需要反转,因此直接返回待翻转部分的头结点即可)。
  2. 对其进行翻转。并返回翻转后的头结点(注意:翻转为左闭又开区间,所以本轮操作的尾结点其实就是下一轮操作的头结点)。
  3. 对下一轮 k 个节点也进行翻转操作。
  4. 将上一轮翻转后的尾结点指向下一轮翻转后的头节点,即将每一轮翻转的k的节点连接起来。

示意图

代码实现

Java 版本
/**
 * Definition for singly-linked list.
 * public class ListNode {
 *     int val;
 *     ListNode next;
 *     ListNode() {}
 *     ListNode(int val) { this.val = val; }
 *     ListNode(int val, ListNode next) { this.val = val; this.next = next; }
 * }
 */
class Solution {
    /**
     * 反转链表中每个大小为 k 的连续节点的子链表
     * @param head 当前子链表的头节点
     * @param k 指定的连续节点个数
     * @return 反转后的链表的头节点
     */
    public ListNode reverseKGroup(ListNode head, int k) {
        if (head == null || head.next == null) {
            return head;
        }
        ListNode tail = head;
        for (int i = 0; i < k; i++) {
            // 如果剩余数量小于 k,则不需要反转。
            if (tail == null) {
                return head;
            }
            tail = tail.next;
        }
        // 反转前 k 个元素
        ListNode newHead = reverse(head, tail);
        // 下一轮的开始的地方就是 tail
        head.next = reverseKGroup(tail, k);
        return newHead;
    }
    /**
     * 反转链表中左闭右开区间的节点
     * @param head 左闭区间的头节点
     * @param tail 右开区间的尾节点
     * @return 反转后的链表的头节点
     */
    private ListNode reverse(ListNode head, ListNode tail) {
        ListNode pre = null;
        ListNode next = null;
        while (head != tail) {
            next = head.next;
            head.next = pre;
            pre = head;
            head = next;
        }
        return pre;
    }
}

说明:

reverseKGroup() 方法用于将链表每个大小为 k 的子列表进行反转。

如果输入的头节点 head 或其下一个节点为空,则无需翻转,直接返回头节点。

使用 tail 指针找到当前子列表的结束节点(即当前子列表的下一组的开始节点)。

如果剩余节点数量不足 k,则无需进行翻转,直接返回头节点。

调用 reverse() 方法反转当前子列表,并得到翻转后的新的头节点 newHead。

通过递归调用 reverseKGroup() 方法,将下一轮的开始位置 tail 作为参数传入。

将当前子列表的头节点 head 的 next 指针指向下一轮的结果,连接翻转后的下一组子列表。

返回翻转后的新的头节点 newHead。

C 语言版本
struct ListNode {
    int val;
    struct ListNode *next;
};
/**
 * 反转以头节点head开始,尾节点为tail前一个节点的链表
 * 返回反转后的链表的头节点
 */
struct ListNode* reverse(struct ListNode* head, struct ListNode* tail) {
    struct ListNode* prev = NULL;
    struct ListNode* curr = head;
    struct ListNode* next = NULL;
    while (curr != tail) {
        next = curr->next;
        curr->next = prev;
        prev = curr;
        curr = next;
    }
    return prev;
}
/**
 * 反转每个大小为k的连续节点子链表
 * 返回修改后的链表的头节点
 */
struct ListNode* reverseKGroup(struct ListNode* head, int k) {
    if (head == NULL || head->next == NULL) {
        return head;
    }
    struct ListNode* tail = head;
    for (int i = 0; i < k; i++) {
        // 如果剩余节点数不足k个,无需反转,直接返回头节点
        if (tail == NULL) {
            return head;
        }
        tail = tail->next;
    }
    // 反转前k个节点
    struct ListNode* newHead = reverse(head, tail);
    // 递归调用反转后续的子链表,并将结果连接到当前子链表的末尾
    head->next = reverseKGroup(tail, k);
    return newHead;
}

说明:

结构体 ListNode 定义了链表节点的结构,包含一个整型变量 val 和一个指向下一个节点的指针 next。

reverse() 函数用于反转以 head 节点为开始,以 tail 节点为前一个节点的子链表,并返回反转后的链表的头节点。

在 reverse() 函数中,使用三个指针 prev、curr 和 next 分别表示前一个节点、当前节点和下一个节点。

在 while 循环中,将当前节点 curr 的 next 指针指向前一个节点 prev,实现反转。

通过更新指针的位置,进行下一次的节点遍历。

返回反转后的链表的头节点 prev。

reverseKGroup() 函数用于反转每个大小为 k 的连续节点的子链表,并返回修改后的链表的头节点。

在 reverseKGroup() 函数中,如果输入的头节点 head 或其下一个节点为空,则无需反转,直接返回头节点。

使用指针 tail 找到当前子链表的结束节点(即当前子链表的下一组的开始节点)。

如果剩余节点数量不足 k,则无需反转,直接返回头节点。

调用 reverse() 函数反转当前子链表,并得到反转后的新头节点 newHead。

递归调用 reverseKGroup() 函数,对剩余的子链表进行反转,并将结果连接到当前子链表的末尾。

返回反转后的新头节点 newHead。

Python3 版本
class ListNode:
    def __init__(self, val=0, next=None):
        self.val = val
        self.next = next
def reverse(head: ListNode, tail: ListNode) -> ListNode:
    """
    反转以head为头节点、tail为尾节点的子链表
    并返回反转后的链表的头节点
    """
    prev = None
    curr = head
    while curr != tail:
        next = curr.next
        curr.next = prev
        prev = curr
        curr = next
    return prev
def reverseKGroup(head: ListNode, k: int) -> ListNode:
    """
    反转每个大小为k的连续子链表
    并返回修改后的链表的头节点
    """
    if not head or not head.next:
        return head
    tail = head
    # 找到子链表的尾节点
    for _ in range(k):
        if not tail:
            return head
        tail = tail.next
    # 反转子链表,并获取反转后的新的头节点
    new_head = reverse(head, tail)
    # 递归调用,将下一组子链表的头节点连接到当前子链表的末尾
    head.next = reverseKGroup(tail, k)
    return new_head

代码说明:

ListNode 类定义了链表节点的结构,包含一个整数类型变量 val 和一个指向下一个节点的指针 next。

reverse() 函数用于反转以 head 节点为开始,以 tail 节点为前一个节点的子链表,并返回反转后的链表的头节点。

在 reverse() 函数中,使用三个指针 prev、curr 和 next 分别表示前一个节点、当前节点和下一个节点。

在 while 循环中,将当前节点 curr 的 next 指针指向前一个节点 prev,实现反转。

通过更新指针的位置,进行下一次的节点遍历。

返回反转后的链表的头节点 prev。

reverseKGroup() 函数用于反转每个大小为 k 的连续节点的子链表,并返回修改后的链表的头节点。

在 reverseKGroup() 函数中,如果输入的头节点 head 或其下一个节点为空,则无需反转,直接返回头节点。

使用指针 tail 找到当前子链表的结束节点(即当前子链表的下一组的开始节点)。

如果剩余节点数量不足 k,则无需反转,直接返回头节点。

调用 reverse() 函数反转当前子链表,并得到反转后的新头节点 new_head。

递归调用 reverseKGroup() 函数,对剩余的子链表进行反转,并将结果连接到当前子链表的末尾。

返回反转后的新头节点 new_head。

复杂度分析

  • 时间复杂度:O(n),其中 n 是链表的长度。每个节点都被遍历一次,每次遍历反转 k 个节点。
  • 空间复杂度:O(n/k),递归调用栈的深度

方式二:迭代和原地反转

思路

迭代和原地反转的方法是通过遍历链表,对每个子链表进行原地反转,然后将反转后的子链表拼接到最终结果中。

代码实现

Java 版本
class Solution {
    /**
     * 反转以 head 为头节点的链表中的前 k 个节点
     * 返回反转后的头节点以及反转后的尾节点
     */
    private ListNode reverseK(ListNode head, int k) {
        ListNode prev = null;
        ListNode curr = head;
        for (int i = 0; i < k; i++) {
            ListNode next = curr.next;
            curr.next = prev;
            prev = curr;
            curr = next;
        }
        return new ListNode[]{prev, head};
    }
    public ListNode reverseKGroup(ListNode head, int k) {
        ListNode dummy = new ListNode(0); // 创建一个虚拟头节点
        dummy.next = head;
        ListNode prev = dummy; // prev 始终指向每个子链表的反转前的最后一个节点
        ListNode curr = head; // curr 用于遍历链表
        while (curr != null) {
            ListNode tail = curr; // tail 保存每个子链表的最后一个节点
            int count = 0; // count 记录当前子链表的长度
            while (curr != null && count < k) {
                curr = curr.next;
                count++;
            }
            if (count < k) {
                // 如果剩余节点数不足 k,则不需要反转,直接跳出循环
                break;
            }
            ListNode[] result = reverseK(tail, k); // 反转当前子链表的前 k 个节点
            ListNode reversedHead = result[0]; // 反转后的头节点
            ListNode reversedTail = result[1]; // 反转后的尾节点
            // 将反转后的子链表接入链表
            prev.next = reversedHead;
            reversedTail.next = curr;
            prev = reversedTail; // 更新 prev 指针
        }
        return dummy.next;
    }
}

说明:

reverseK 方法用于反转以 head 为头节点的链表中的前 k 个节点。返回反转后的头节点和尾节点(这里使用了一个数组来返回多个节点)。

reverseKGroup 方法实现以 k 个一组翻转链表的功能。

创建一个虚拟头节点 dummy 来简化链表操作。

prev 指针始终指向每个子链表的反转前的最后一个节点。

curr 指针用于遍历链表。

使用循环遍历链表,直至 curr 为 null,这样可以处理剩余不足 k 个节点的情况。

在循环中,先找到当前子链表的最后一个节点 tail。

然后,再遍历 k 个节点,通过调用 reverseK 方法来反转这个子链表的前 k 个节点。

获取反转后的头节点 reversedHead 和尾节点 reversedTail。

将反转后的子链表接入链表中,即将 prev 的 next 指向 reversedHead,reversedTail 的 next 指向 curr。

更新 prev 指针,使其指向反转后的尾节点。

C 语言版本
struct ListNode {
    int val;
    struct ListNode *next;
};
/**
 * 反转以 head 为头节点、tail 为尾节点的子链表
 * 并返回反转后的链表的头节点
 */
struct ListNode* reverseLinkedList(struct ListNode* head, struct ListNode* tail) {
    struct ListNode* prev = NULL;
    struct ListNode* curr = head;
    while (curr != tail) {
        struct ListNode* next = curr->next;
        curr->next = prev;
        prev = curr;
        curr = next;
    }
    return prev;
}
/**
 * 按照 k 个一组翻转链表
 * 并返回修改后的链表的头节点
 */
struct ListNode* reverseKGroup(struct ListNode* head, int k) {
    struct ListNode* dummy = malloc(sizeof(struct ListNode)); // 创建一个虚拟头节点
    dummy->val = 0;
    dummy->next = head;
    struct ListNode* prev = dummy; // prev 始终指向每个子链表的反转前的最后一个节点
    struct ListNode* curr = head; // curr 用于遍历链表
    while (curr != NULL) {
        struct ListNode* tail = curr; // tail 保存每个子链表的最后一个节点
        int count = 0; // count 记录当前子链表的长度
        while (curr != NULL && count < k) {
            curr = curr->next;
            count++;
        }
        if (count < k) {
            break; // 如果剩余节点数不足 k,则不需要反转,直接跳出循环
        }
        struct ListNode* reversedHead = reverseLinkedList(tail, curr); // 反转当前子链表
        struct ListNode* reversedTail = tail;
        // 将反转后的子链表接入链表
        prev->next = reversedHead;
        reversedTail->next = curr;
        prev = reversedTail; // 更新 prev 指针
    }
    struct ListNode* newHead = dummy->next;
    free(dummy); // 释放虚拟头节点的内存
    return newHead;
}

说明:

reverseLinkedList 函数用于反转以 head 为头节点,以 tail 为前一个节点的子链表,并返回反转后的链表的头节点。

在 reverseLinkedList 函数中,使用两个指针 prev 和 curr 分别表示前一个节点和当前节点。

在 while 循环中,将当前节点 curr 的 next 指针指向前一个节点 prev,实现反转。

通过更新指针的位置,进行下一次的节点遍历。

返回反转后的链表的头节点 prev。

reverseKGroup 函数实现按照 k 个一组翻转链表的功能。

创建一个虚拟头节点 dummy 并将其指向链表的头部,以便于处理头节点的情况。

使用两个指针 prev 和 curr 分别指向当前子链表的最后一个节点和遍历节点。

在循环中,首先找到当前子链表的末尾节点 tail,然后再遍历 k 个节点。

如果剩余的节点数量不足 k 个,则不需要反转,直接退出循环。

调用 reverseLinkedList 函数反转当前子链表,并获取反转后的头节点 reversedHead 和尾节点 reversedTail。

将反转后的子链表接入链表中,即将 prev 的 next 指针指向 reversedHead,reversedTail 的 next 指针指向 curr。

更新 prev 指针,向后移动到反转后的子链表的尾节点。

返回虚拟头节点 dummy 的 next 指针,即为反转后的链表的头结点。

Python3 版本
class ListNode:
    def __init__(self, val=0, next=None):
        self.val = val
        self.next = next
def reverseLinkedList(head: ListNode, tail: ListNode) -> ListNode:
    prev = None
    curr = head
    while curr != tail:
        next_node = curr.next
        curr.next = prev
        prev = curr
        curr = next_node
    return prev
def reverseKGroup(head: ListNode, k: int) -> ListNode:
    dummy = ListNode(0)  # 创建一个虚拟头节点
    dummy.next = head
    prev = dummy  # prev 始终指向每个子链表的反转前的最后一个节点
    curr = head  # curr 用于遍历链表
    while curr:
        tail = curr  # tail 保存每个子链表的最后一个节点
        count = 0  # count 记录当前子链表的长度
        while curr and count < k:
            curr = curr.next
            count += 1
        if count < k:
            break  # 如果剩余节点数不足 k,则不需要反转,直接跳出循环
        reversed_head = reverseLinkedList(tail, curr)  # 反转当前子链表
        reversed_tail = tail
        # 将反转后的子链表接入链表
        prev.next = reversed_head
        reversed_tail.next = curr
        prev = reversed_tail  # 更新 prev 指针
    return dummy.next

说明:

reverseLinkedList 函数用于反转以 head 为头节点、tail 为尾节点的子链表,并返回反转后的链表的头节点。

在 reverseLinkedList 函数中,使用两个指针 prev 和 curr 分别表示前一个节点和当前节点。

在 while 循环中,将当前节点 curr 的 next 指针指向前一个节点 prev,实现反转。

通过更新指针的位置,进行下一次的节点遍历。

返回反转后的链表的头节点 prev。

reverseKGroup 函数用于按照 k 个一组翻转链表。

创建一个虚拟头节点 dummy 并将其指向链表的头部,以便于处理头节点的情况。

使用两个指针 prev 和 curr 分别指向当前子链表的最后一个节点和遍历节点。

在循环中,首先找到当前子链表的末尾节点 tail,然后再遍历 k 个节点。

如果剩余的节点数量不足 k 个,则不需要反转,直接退出循环。

调用 reverseLinkedList 函数反转子链表,并获取反转后的头节点和尾节点。

将反转后的子链表接入链表中,即将 prev 的 next 指针指向反转后的头节点,尾节点的 next 指针指向下一个子链表的头节点。

更新 prev 指针,向后移动到反转后的子链表的尾节点。

复杂度分析

  • 时间复杂度:O(n),其中 n 是链表的长度。每个节点恰好被访问两次:一次是遍历整个链表,一次是进行反转操作。
  • 空间复杂度:O(1)。只使用了常数级别的额外空间来进行指针操作,没有使用额外的数据结构。

总结

递归法 迭代+原地反转方法
思路 将链表划分为大小为k的子链表,递归处理 使用循环迭代遍历链表,并在每次迭代中原地反转子链表
时间复杂度 O(n),每个节点被遍历一次 O(n),每个节点被遍历一次
空间复杂度 O(n/k),递归调用栈的深度 O(1),原地修改链表
(如果递归栈的深度达到n/k,则创建了O(n/k)个递归调用栈帧) (不需要额外的空间,仅使用常数级别的指针变量和变量存储空间)
优点 实现简单,逻辑清晰 不需要额外的递归调用栈,适用于大规模链表
代码可读性好 原地修改链表,不需要额外空间
缺点 递归调用栈可能溢出 实现相对复杂,需要处理指针的连接
额外的空间复杂度 需要对子链表进行循环遍历和反转
特点 可以处理较小规模的链表 适用于大规模链表处理和优化空间复杂度
可读性好,思考和实现过程接近问题描述 可读性相对较差,实现相对复杂

相似题目

相似题目 力扣链接
反转链表 II 力扣92
反转链表 力扣206
K个一组翻转链表 力扣25
相关文章
|
19天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
212 55
|
2月前
|
人工智能 安全 Java
Java和Python在企业中的应用情况
Java和Python在企业中的应用情况
62 7
|
7天前
|
存储 缓存 监控
局域网屏幕监控系统中的Python数据结构与算法实现
局域网屏幕监控系统用于实时捕获和监控局域网内多台设备的屏幕内容。本文介绍了一种基于Python双端队列(Deque)实现的滑动窗口数据缓存机制,以处理连续的屏幕帧数据流。通过固定长度的窗口,高效增删数据,确保低延迟显示和存储。该算法适用于数据压缩、异常检测等场景,保证系统在高负载下稳定运行。 本文转载自:https://www.vipshare.com
102 66
|
2月前
|
搜索推荐 Python
利用Python内置函数实现的冒泡排序算法
在上述代码中,`bubble_sort` 函数接受一个列表 `arr` 作为输入。通过两层循环,外层循环控制排序的轮数,内层循环用于比较相邻的元素并进行交换。如果前一个元素大于后一个元素,就将它们交换位置。
139 67
|
2月前
|
存储 搜索推荐 Python
用 Python 实现快速排序算法。
快速排序的平均时间复杂度为$O(nlogn)$,空间复杂度为$O(logn)$。它在大多数情况下表现良好,但在某些特殊情况下可能会退化为最坏情况,时间复杂度为$O(n^2)$。你可以根据实际需求对代码进行调整和修改,或者尝试使用其他优化策略来提高快速排序的性能
128 61
|
29天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
155 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
11天前
|
存储 运维 监控
探索局域网电脑监控软件:Python算法与数据结构的巧妙结合
在数字化时代,局域网电脑监控软件成为企业管理和IT运维的重要工具,确保数据安全和网络稳定。本文探讨其背后的关键技术——Python中的算法与数据结构,如字典用于高效存储设备信息,以及数据收集、异常检测和聚合算法提升监控效率。通过Python代码示例,展示了如何实现基本监控功能,帮助读者理解其工作原理并激发技术兴趣。
49 20
|
4天前
|
算法 网络协议 Python
探秘Win11共享文件夹之Python网络通信算法实现
本文探讨了Win11共享文件夹背后的网络通信算法,重点介绍基于TCP的文件传输机制,并提供Python代码示例。Win11共享文件夹利用SMB协议实现局域网内的文件共享,通过TCP协议确保文件传输的完整性和可靠性。服务器端监听客户端连接请求,接收文件请求并分块发送文件内容;客户端则连接服务器、接收数据并保存为本地文件。文中通过Python代码详细展示了这一过程,帮助读者理解并优化文件共享系统。
|
9天前
|
存储 算法 Python
文件管理系统中基于 Python 语言的二叉树查找算法探秘
在数字化时代,文件管理系统至关重要。本文探讨了二叉树查找算法在文件管理中的应用,并通过Python代码展示了其实现过程。二叉树是一种非线性数据结构,每个节点最多有两个子节点。通过文件名的字典序构建和查找二叉树,能高效地管理和检索文件。相较于顺序查找,二叉树查找每次比较可排除一半子树,极大提升了查找效率,尤其适用于海量文件管理。Python代码示例包括定义节点类、插入和查找函数,展示了如何快速定位目标文件。二叉树查找算法为文件管理系统的优化提供了有效途径。
41 5
|
2月前
|
存储 算法 搜索推荐
Python 中数据结构和算法的关系
数据结构是算法的载体,算法是对数据结构的操作和运用。它们共同构成了计算机程序的核心,对于提高程序的质量和性能具有至关重要的作用