C语言函数大全--c开头的函数之复数篇

简介: 【6月更文挑战第3天】本篇介绍 C语言中 c开头的函数之复数篇【C语言函数大全】

image.png

总览

函数声明 函数功能
double cabs (double complex z); 计算复数 z 的绝对值(double)
float cabsf (float complex z); 计算复数 z 的绝对值(float)
long double cabsl (long double complex z); 计算复数 z 的绝对值(long double)
double creal (double complex z); 计算复数z的实部(double)
float crealf (float complex z); 计算复数z的实部(float)
long double creall (long double complex z); 计算复数z的实部(long double)
double cimag (double complex z); 计算复数z的虚部(double)
float cimagf (float complex z); 计算复数z的虚部(float)
long double cimagl (long double complex z); 计算复数z的虚部(long double)
double carg (double complex z); 计算复数z的相位角 (double)
float cargf (float complex z); 计算复数z的相位角(float)
long double cargl (long double complex z); 计算复数z的相位角(long double)
double complex cacos (double complex z); 计算复数z的反余弦 (double complex)
float complex cacosf (float complex z); 计算复数z的反余弦(float complex)
long double complex cacosl (long double complex z); 计算复数z的反余弦(long double complex)
double complex cacosh (double complex z); 计算复数z的反双曲余弦(double complex)
float complex cacoshf (float complex z); 计算复数z的反双曲余弦(float complex)
long double complex cacoshl (long double complex z); 计算复数z的反双曲余弦(long double complex)
double complex casin (double complex z); 计算复数z的反正弦(double complex)
float complex casinf (float complex z); 计算复数z的反正弦(float complex)
long double complex casinl (long double complex z); 计算复数z的反正弦(long double complex)
double complex casinh (double complex z); 计算复数z的反双曲正弦(double complex)
float complex casinhf (float complex z); 计算复数z的反双曲正弦(float complex)
long double complex casinhl (long double complex z); 计算复数z的反双曲正弦(long double complex)
double complex catan (double complex z); 计算复数z的反正切(double complex)
float complex catanf (float complex z); 计算复数z的反正切(float complex)
long double complex catanl (long double complex z); 计算复数z的反正切(long double complex)
double complex catanh (double complex z); 计算复数z的反双曲正切(double complex)
float complex catanhf (float complex z); 计算复数z的反双曲正切(float complex)
long double complex catanhl (long double complex z); 计算复数z的反双曲正切(long double complex)
double complex ccos (double complex z); 计算复数z的余弦(double complex)
float complex ccosf (float complex z); 计算复数z的余弦(float complex)
long double complex ccosl (long double complex z); 计算复数z的余弦(long double complex)
double complex ccosh (double complex z); 计算复数z的双曲余弦(double complex)
float complex ccoshf (float complex z); 计算复数z的双曲余弦(float complex)
long double complex ccoshl (long double complex z); 计算复数z的双曲余弦(long double complex)
double complex csin (double complex z); 计算复数z的正弦(double complex)
float complex csinf (float complex z); 计算复数z的正弦(float complex)
long double complex csinl (long double complex z); 计算复数z的正弦(long double complex)
double complex csinh (double complex z); 计算复数z的双曲正弦(double complex)
float complex csinhf (float complex z); 计算复数z的双曲正弦(float complex)
long double complex csinhl (long double complex z); 计算复数z的双曲正弦(long double complex)
double complex ctan (double complex z); 计算复数z的正切(double complex)
float complex ctanf (float complex z); 计算复数z的正切(float complex)
long double complex ctanl (long double complex z); 计算复数z的正切(long double complex)
double complex ctanh (double complex z); 计算复数z的双曲正切(double complex)
float complex ctanhf (float complex z); 计算复数z的双曲正切(float complex)
long double complex ctanhl (long double complex z); 计算复数z的双曲正切(long double complex)
double complex cexp (double complex z); 计算复数z的指数基数e(double complex)
float complex cexpf (float complex z); 计算复数z的指数基数e(float complex)
long double complex cexpl (long double complex z); 计算复数z的指数基数e(long double complex)
double complex clog (double complex z); 计算复数z的自然对数(以e为底)(double complex)
float complex clogf (float complex z); 计算复数z的自然对数(以e为底)(float complex)
long double complex clogl (long double complex z); 计算复数z的自然对数(以e为底)(long double complex)
double complex conj (double complex z); 计算复数z的共轭(double complex)
float complex conjf (float complex z); 计算复数z的共轭(float complex)
long double complex conjl (long double complex z); 计算复数z的共轭(long double complex)
double complex cpow (double complex x, double complex y); 计算x的y次方值 (double complex)
float complex cpowf (float complex x, float complex y); 计算x的y次方值 (float complex)
long double complex cpowl (long double complex x, long double complex y); 计算x的y次方值 (double complex)
double complex cproj (double complex z); 计算复数z在黎曼球面上的投影(double complex)
float complex cprojf (float complex z); 计算复数z在黎曼球面上的投影(float complex)
long double complex cprojl (long double complex z); 计算复数z在黎曼球面上的投影(long double complex)
double complex csqrt (double complex z); 计算复数z的平方根(double complex)
float complex csqrtf (float complex z); 计算复数z的平方根(float complex)
long double complex csqrtl (long double complex z); 计算复数z的平方根(long double complex)

1. cabs,cabsf,cabsl

1.1 函数说明

函数声明 函数功能
double cabs (double complex z); 计算复数 z 的绝对值(double)
float cabsf (float complex z); 计算复数 z 的绝对值(float)
long double cabsl (long double complex z); 计算复数 z 的绝对值(long double)

1.2 演示示例

// Huazie
#include <stdio.h>
#include <complex.h>

int main(void)
{
   
   
    double complex z;
    double x = 2.0, y = 2.0, val;
    z = x + y * I; // I 代指 虚数单位 i
    val = cabs(z); // 计算复数 z 的绝对值

    float complex zf;
    float xf = 2.0, yf = 2.0, valf;
    zf = xf + yf * I;
    valf = cabsf(zf);

    long double complex zL;
    long double xL = 2.0, yL = 2.0, valL;
    zL = xL + yL * I;
    valL = cabsl(zL);

    printf("The absolute value of (%.4lf + %.4lfi) is %.20lf\n", x, y, val);
    printf("The absolute value of (%.4f + %.4fi) is %.20f\n", xf, yf, valf);
    printf("The absolute value of (%.4Lf + %.4Lfi) is %.20Lf", xL, yL, valL);

    return 0;
}

1.3 运行结果

image.png

2. creal,crealf,creall

2.1 函数说明

函数声明 函数功能
double creal (double complex z); 计算复数z的实部(double)
float crealf (float complex z); 计算复数z的实部(float)
long double creall (long double complex z); 计算复数z的实部(long double)

2.2 演示示例

// Huazie
#include <stdio.h>
#include <complex.h>

int main(void)
{
   
   
    double complex z;
    double x = 2.0, y = 1.0;
    z = x + y * I; // I 代指 虚数单位 i

    float complex zf;
    float xf = 3.0, yf = 1.0;
    zf = xf + yf * I;

    long double complex zL;
    long double xL = 4.0, yL = 1.0;
    zL = xL + yL * I;

    printf("The real part of (%.4lf + %.4lfi) is %.4lf\n", x, y, creal(z));
    printf("The real part of (%.4f + %.4fi) is %.4f\n", xf, yf, crealf(zf));
    printf("The real part of (%.4Lf + %.4Lfi) is %.4Lf", xL, yL, creall(zL));

    return 0;
}

2.3 运行结果

image.png

3. cimag,cimagf,cimagl

3.1 函数说明

函数声明 函数功能
double cimag (double complex z); 计算复数z的虚部(double)
float cimagf (float complex z); 计算复数z的虚部(float)
long double cimagl (long double complex z); 计算复数z的虚部(long double)

3.2 演示示例

// Huazie
#include <stdio.h>
#include <complex.h>

int main(void)
{
   
   
    double complex z;
    double x = 1.0, y = 2.0;
    z = x + y * I; // I 代指 虚数单位 i

    float complex zf;
    float xf = 1.0, yf = 3.0;
    zf = xf + yf * I;

    long double complex zL;
    long double xL = 1.0, yL = 4.0;
    zL = xL + yL * I;

    printf("The imaginary part of (%.4lf + %.4lfi) is %.4lf\n", x, y, cimag(z));
    printf("The imaginary part of (%.4f + %.4fi) is %.4f\n", xf, yf, cimagf(zf));
    printf("The imaginary part of (%.4Lf + %.4Lfi) is %.4Lf", xL, yL, cimagl(zL));

    return 0;
}

3.3 运行结果

image.png

4. carg,cargf,cargl

4.1 函数说明

函数声明 函数功能
double carg (double complex z); 计算复数z的相位角 (double)
float cargf (float complex z); 计算复数z的相位角(float)
long double cargl (long double complex z); 计算复数z的相位角(long double)

相位角是描述波形在时间轴上的位置的一个重要参数,它决定了波形的起始位置和变化状态。在实际应用中,相位角的测量和控制对于电路设计和信号处理至关重要。通过对相位角的理解和应用,可以更好地分析和控制波动现象,从而实现对电力系统和通信系统的优化。

4.2 演示示例

#include <stdio.h>
#include <complex.h>

int main(void)
{
   
   
    double complex z;
    z = 1.0 + 2.0 * I; // I 代指 虚数单位 i

    float complex zf;
    zf = 1.0f + 2.0f * I;

    long double complex zL;
    zL = (long double) 1.0 + (long double) 2.0 * I;

    printf("The phase angle of (%.4lf + %.4lfi) is %.60lf\n", creal(z), cimag(z), carg(z));
    printf("The phase angle of (%.4f + %.4fi) is %.60f\n", crealf(zf), cimagf(zf), cargf(zf));
    printf("The phase angle of (%.4Lf + %.4Lfi) is %.60Lf", creall(zL), cimagl(zL), cargl(zL));

    return 0;
}

4.3 运行结果

image.png

5. cacos,cacosf,cacosl

5.1 函数说明

函数声明 函数功能
double complex cacos (double complex z); 计算复数z的反余弦 (double complex)
float complex cacosf (float complex z); 计算复数z的反余弦(float complex)
long double complex cacosl (long double complex z); 计算复数z的反余弦(long double complex)

5.2 演示示例

#include <stdio.h>
#include <math.h>
#include <complex.h>

int main(void)
{
   
   
    double complex z, zcacos;
    z = 1.0 + 2.0 * I; // I 代指 虚数单位 i
    zcacos = cacos(z); // 计算复数z的反余弦

    float complex zf, zcacosf;
    zf = 1.0f + 2.0f * I;
    zcacosf = cacosf(zf);

    long double complex zL, zcacosl;
    zL = (long double) 1.0 + (long double) 2.0 * I;
    zcacosl = cacosl(zL);

    double zimag = cimag(zcacos);
    float zimagf = cimagf(zcacosf);
    long double zimagl = cimagl(zcacosl);
    if (zimag < 0) 
        printf("The arc cosine of (%.4lf + %.4lfi) is (%.20lf - %.20lfi)\n", creal(z), cimag(z), creal(zcacos), fabs(zimag));
    else 
        printf("The arc cosine of (%.4lf + %.4lfi) is (%.20lf + %.20lfi)\n", creal(z), cimag(z), creal(zcacos), zimag);       

    if (zimagf < 0) 
        printf("The arc cosine of (%.4f + %.4fi) is (%.20f - %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcacosf), fabsf(zimagf));
    else 
        printf("The arc cosine of (%.4f + %.4fi) is (%.20f + %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcacosf), zimagf);

    if (zimagl < 0) 
        printf("The arc cosine of (%.4Lf + %.4Lfi) is (%.20Lf - %.20Lfi)", creall(zL), cimagl(zL), creall(zcacosl), fabsl(zimagl));
    else 
        printf("The arc cosine of (%.4Lf + %.4Lfi) is (%.20Lf + %.20Lfi)", creall(zL), cimagl(zL), creall(zcacosl), zimagl);
    return 0;
}

5.3 运行结果

image.png

6. cacosh,cacoshf,cacoshl

6.1 函数说明

函数声明 函数功能
double complex cacosh (double complex z); 计算复数z的反双曲余弦(double complex)
float complex cacoshf (float complex z); 计算复数z的反双曲余弦(float complex)
long double complex cacoshl (long double complex z); 计算复数z的反双曲余弦(long double complex)

6.2 演示示例

#include <stdio.h>
#include <math.h>
#include <complex.h>

int main(void)
{
   
   
    double complex z, zcacosh;
    z = 1.0 + 2.0 * I; // I 代指 虚数单位 i
    zcacosh = cacosh(z); // 反双曲余弦

    float complex zf, zcacoshf;
    zf = 1.0f + 2.0f * I;
    zcacoshf = cacoshf(zf);

    long double complex zL, zcacoshl;
    zL = (long double) 1.0 + (long double) 2.0 * I;
    zcacoshl = cacoshl(zL);

    double zimag = cimag(zcacosh);
    float zimagf = cimagf(zcacoshf);
    long double zimagl = cimagl(zcacoshl);
    if (zimag < 0) 
        printf("The inverse hyperbolic cosine of (%.4lf + %.4lfi) is (%.20lf - %.20lfi)\n", creal(z), cimag(z), creal(zcacosh), fabs(zimag));
    else 
        printf("The inverse hyperbolic cosine of (%.4lf + %.4lfi) is (%.20lf + %.20lfi)\n", creal(z), cimag(z), creal(zcacosh), zimag);       

    if (zimagf < 0) 
        printf("The inverse hyperbolic cosine of (%.4f + %.4fi) is (%.20f - %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcacoshf), fabsf(zimagf));
    else 
        printf("The inverse hyperbolic cosine of (%.4f + %.4fi) is (%.20f + %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcacoshf), zimagf);

    if (zimagl < 0) 
        printf("The inverse hyperbolic cosine of (%.4Lf + %.4Lfi) is (%.20Lf - %.20Lfi)", creall(zL), cimagl(zL), creall(zcacoshl), fabsl(zimagl));
    else 
        printf("The inverse hyperbolic cosine of (%.4Lf + %.4Lfi) is (%.20Lf + %.20Lfi)", creall(zL), cimagl(zL), creall(zcacoshl), zimagl);
    return 0;
}

6.3 运行结果

image.png

7. casin,casinf,casinl

7.1 函数说明

函数声明 函数功能
double complex casin (double complex z); 计算复数z的反正弦(double complex)
float complex casinf (float complex z); 计算复数z的反正弦(float complex)
long double complex casinl (long double complex z); 计算复数z的反正弦(long double complex)

7.2 演示示例

#include <stdio.h>
#include <math.h>
#include <complex.h>

int main(void)
{
   
   
    double complex z, zcasin;
    z = 1.0 + 2.0 * I; // I 代指 虚数单位 i
    zcasin = casin(z); // 反正弦

    float complex zf, zcasinf;
    zf = 1.0f + 2.0f * I;
    zcasinf = casinf(zf);

    long double complex zL, zcasinl;
    zL = (long double) 1.0 + (long double) 2.0 * I;
    zcasinl = casinl(zL);

    double zimag = cimag(zcasin);
    float zimagf = cimagf(zcasinf);
    long double zimagl = cimagl(zcasinl);
    if (zimag < 0) 
        printf("The arcsine of (%.4lf + %.4lfi) is (%.20lf - %.20lfi)\n", creal(z), cimag(z), creal(zcasin), fabs(zimag));
    else 
        printf("The arcsine of (%.4lf + %.4lfi) is (%.20lf + %.20lfi)\n", creal(z), cimag(z), creal(zcasin), zimag);       

    if (zimagf < 0) 
        printf("The arcsine of (%.4f + %.4fi) is (%.20f - %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcasinf), fabsf(zimagf));
    else 
        printf("The arcsine of (%.4f + %.4fi) is (%.20f + %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcasinf), zimagf);

    if (zimagl < 0) 
        printf("The arcsine of (%.4Lf + %.4Lfi) is (%.20Lf - %.20Lfi)", creall(zL), cimagl(zL), creall(zcasinl), fabsl(zimagl));
    else 
        printf("The arcsine of (%.4Lf + %.4Lfi) is (%.20Lf + %.20Lfi)", creall(zL), cimagl(zL), creall(zcasinl), zimagl);
    return 0;
}

7.3 运行结果

image.png

8. casinh,casinhf,casinhl

8.1 函数说明

函数声明 函数功能
double complex casinh (double complex z); 计算复数z的反双曲正弦(double complex)
float complex casinhf (float complex z); 计算复数z的反双曲正弦(float complex)
long double complex casinhl (long double complex z); 计算复数z的反双曲正弦(long double complex)

8.2 演示示例

#include <stdio.h>
#include <math.h>
#include <complex.h>

int main(void)
{
   
   
    double complex z, zcasinh;
    z = 1.0 + 2.0 * I; // I 代指 虚数单位 i
    zcasinh = casinh(z); // 反双曲正弦

    float complex zf, zcasinhf;
    zf = 1.0f + 2.0f * I;
    zcasinhf = casinhf(zf);

    long double complex zL, zcasinhl;
    zL = (long double) 1.0 + (long double) 2.0 * I;
    zcasinhl = casinhl(zL);

    double zimag = cimag(zcasinh);
    float zimagf = cimagf(zcasinhf);
    long double zimagl = cimagl(zcasinhl);
    if (zimag < 0) 
        printf("The inverse hyperbolic sine of (%.4lf + %.4lfi) is (%.20lf - %.20lfi)\n", creal(z), cimag(z), creal(zcasinh), fabs(zimag));
    else 
        printf("The inverse hyperbolic sine of (%.4lf + %.4lfi) is (%.20lf + %.20lfi)\n", creal(z), cimag(z), creal(zcasinh), zimag);       

    if (zimagf < 0) 
        printf("The inverse hyperbolic sine of (%.4f + %.4fi) is (%.20f - %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcasinhf), fabsf(zimagf));
    else 
        printf("The inverse hyperbolic sine of (%.4f + %.4fi) is (%.20f + %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcasinhf), zimagf);

    if (zimagl < 0) 
        printf("The inverse hyperbolic sine of (%.4Lf + %.4Lfi) is (%.20Lf - %.20Lfi)", creall(zL), cimagl(zL), creall(zcasinhl), fabsl(zimagl));
    else 
        printf("The inverse hyperbolic sine of (%.4Lf + %.4Lfi) is (%.20Lf + %.20Lfi)", creall(zL), cimagl(zL), creall(zcasinhl), zimagl);
    return 0;
}

8.3 运行结果

image.png

9. catan,catanf,catanl

9.1 函数说明

函数声明 函数功能
double complex catan (double complex z); 计算复数z的反正切(double complex)
float complex catanf (float complex z); 计算复数z的反正切(float complex)
long double complex catanl (long double complex z); 计算复数z的反正切(long double complex)

9.2 演示示例

#include <stdio.h>
#include <math.h>
#include <complex.h>

int main(void)
{
   
   
    double complex z, zcatan;
    z = 1.0 + 2.0 * I; // I 代指 虚数单位 i
    zcatan = catan(z); // 反正切

    float complex zf, zcatanf;
    zf = 1.0f + 2.0f * I;
    zcatanf = catanf(zf);

    long double complex zL, zcatanl;
    zL = (long double) 1.0 + (long double) 2.0 * I;
    zcatanl = catanl(zL);

    double zimag = cimag(zcatan);
    float zimagf = cimagf(zcatanf);
    long double zimagl = cimagl(zcatanl);
    if (zimag < 0) 
        printf("The arc tangent of (%.4lf + %.4lfi) is (%.20lf - %.20lfi)\n", creal(z), cimag(z), creal(zcatan), fabs(zimag));
    else 
        printf("The arc tangent of (%.4lf + %.4lfi) is (%.20lf + %.20lfi)\n", creal(z), cimag(z), creal(zcatan), zimag);       

    if (zimagf < 0) 
        printf("The arc tangent of (%.4f + %.4fi) is (%.20f - %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcatanf), fabsf(zimagf));
    else 
        printf("The arc tangent of (%.4f + %.4fi) is (%.20f + %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcatanf), zimagf);

    if (zimagl < 0) 
        printf("The arc tangent of (%.4Lf + %.4Lfi) is (%.20Lf - %.20Lfi)", creall(zL), cimagl(zL), creall(zcatanl), fabsl(zimagl));
    else 
        printf("The arc tangent of (%.4Lf + %.4Lfi) is (%.20Lf + %.20Lfi)", creall(zL), cimagl(zL), creall(zcatanl), zimagl);
    return 0;
}

9.3 运行结果

image.png

10. catanh,catanhf,catanhl

10.1 函数说明

函数声明 函数功能
double complex catanh (double complex z); 计算复数z的反双曲正切(double complex)
float complex catanhf (float complex z); 计算复数z的反双曲正切(float complex)
long double complex catanhl (long double complex z); 计算复数z的反双曲正切(long double complex)

10.2 演示示例

#include <stdio.h>
#include <math.h>
#include <complex.h>

int main(void)
{
   
   
    double complex z, zcatanh;
    z = 1.0 + 2.0 * I; // I 代指 虚数单位 i
    zcatanh = catanh(z); // 反双曲正切

    float complex zf, zcatanhf;
    zf = 1.0f + 2.0f * I;
    zcatanhf = catanhf(zf);

    long double complex zL, zcatanhl;
    zL = (long double) 1.0 + (long double) 2.0 * I;
    zcatanhl = catanhl(zL);

    double zimag = cimag(zcatanh);
    float zimagf = cimagf(zcatanhf);
    long double zimagl = cimagl(zcatanhl);
    if (zimag < 0) 
        printf("The inverse hyperbolic tangent of (%.4lf + %.4lfi) is (%.20lf - %.20lfi)\n", creal(z), cimag(z), creal(zcatanh), fabs(zimag));
    else 
        printf("The inverse hyperbolic tangent of (%.4lf + %.4lfi) is (%.20lf + %.20lfi)\n", creal(z), cimag(z), creal(zcatanh), zimag);       

    if (zimagf < 0) 
        printf("The inverse hyperbolic tangent of (%.4f + %.4fi) is (%.20f - %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcatanhf), fabsf(zimagf));
    else 
        printf("The inverse hyperbolic tangent of (%.4f + %.4fi) is (%.20f + %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcatanhf), zimagf);

    if (zimagl < 0) 
        printf("The inverse hyperbolic tangent of (%.4Lf + %.4Lfi) is (%.20Lf - %.20Lfi)", creall(zL), cimagl(zL), creall(zcatanhl), fabsl(zimagl));
    else 
        printf("The inverse hyperbolic tangent of (%.4Lf + %.4Lfi) is (%.20Lf + %.20Lfi)", creall(zL), cimagl(zL), creall(zcatanhl), zimagl);
    return 0;
}

10.3 运行结果

image.png

11. ccos,ccosf,ccosl

11.1 函数说明

函数声明 函数功能
double complex ccos (double complex z); 计算复数z的余弦(double complex)
float complex ccosf (float complex z); 计算复数z的余弦(float complex)
long double complex ccosl (long double complex z); 计算复数z的余弦(long double complex)

11.2 演示示例

#include <stdio.h>
#include <math.h>
#include <complex.h>

int main(void)
{
   
   
    double complex z, zccos;
    z = 1.0 + 2.0 * I; // I 代指 虚数单位 i
    zccos = ccos(z); // 余弦

    float complex zf, zccosf;
    zf = 1.0f + 2.0f * I;
    zccosf = ccosf(zf);

    long double complex zL, zccosl;
    zL = (long double) 1.0 + (long double) 2.0 * I;
    zccosl = ccosl(zL);

    double zimag = cimag(zccos);
    float zimagf = cimagf(zccosf);
    long double zimagl = cimagl(zccosl);
    if (zimag < 0) 
        printf("The cosine of (%.4lf + %.4lfi) is (%.20lf - %.20lfi)\n", creal(z), cimag(z), creal(zccos), fabs(zimag));
    else 
        printf("The cosine of (%.4lf + %.4lfi) is (%.20lf + %.20lfi)\n", creal(z), cimag(z), creal(zccos), zimag);       

    if (zimagf < 0) 
        printf("The cosine of (%.4f + %.4fi) is (%.20f - %.20fi)\n", crealf(zf), cimagf(zf), crealf(zccosf), fabsf(zimagf));
    else 
        printf("The cosine of (%.4f + %.4fi) is (%.20f + %.20fi)\n", crealf(zf), cimagf(zf), crealf(zccosf), zimagf);

    if (zimagl < 0) 
        printf("The cosine of (%.4Lf + %.4Lfi) is (%.20Lf - %.20Lfi)", creall(zL), cimagl(zL), creall(zccosl), fabsl(zimagl));
    else 
        printf("The cosine of (%.4Lf + %.4Lfi) is (%.20Lf + %.20Lfi)", creall(zL), cimagl(zL), creall(zccosl), zimagl);
    return 0;
}

11.3 运行结果

image.png

12. ccosh,ccoshf,ccoshl

12.1 函数说明

函数声明 函数功能
double complex ccosh (double complex z); 计算复数z的双曲余弦(double complex)
float complex ccoshf (float complex z); 计算复数z的双曲余弦(float complex)
long double complex ccoshl (long double complex z); 计算复数z的双曲余弦(long double complex)

12.2 演示示例

#include <stdio.h>
#include <math.h>
#include <complex.h>

int main(void)
{
   
   
    double complex z, zccosh;
    z = 1.0 + 2.0 * I; // I 代指 虚数单位 i
    zccosh = ccosh(z); // 双曲余弦

    float complex zf, zccoshf;
    zf = 1.0f + 2.0f * I;
    zccoshf = ccoshf(zf);

    long double complex zL, zccoshl;
    zL = (long double) 1.0 + (long double) 2.0 * I;
    zccoshl = ccoshl(zL);

    double zimag = cimag(zccosh);
    float zimagf = cimagf(zccoshf);
    long double zimagl = cimagl(zccoshl);
    if (zimag < 0) 
        printf("The hyperbolic cosine of (%.4lf + %.4lfi) is (%.20lf - %.20lfi)\n", creal(z), cimag(z), creal(zccosh), fabs(zimag));
    else 
        printf("The hyperbolic cosine of (%.4lf + %.4lfi) is (%.20lf + %.20lfi)\n", creal(z), cimag(z), creal(zccosh), zimag);       

    if (zimagf < 0) 
        printf("The hyperbolic cosine of (%.4f + %.4fi) is (%.20f - %.20fi)\n", crealf(zf), cimagf(zf), crealf(zccoshf), fabsf(zimagf));
    else 
        printf("The hyperbolic cosine of (%.4f + %.4fi) is (%.20f + %.20fi)\n", crealf(zf), cimagf(zf), crealf(zccoshf), zimagf);

    if (zimagl < 0) 
        printf("The hyperbolic cosine of (%.4Lf + %.4Lfi) is (%.20Lf - %.20Lfi)", creall(zL), cimagl(zL), creall(zccoshl), fabsl(zimagl));
    else 
        printf("The hyperbolic cosine of (%.4Lf + %.4Lfi) is (%.20Lf + %.20Lfi)", creall(zL), cimagl(zL), creall(zccoshl), zimagl);
    return 0;
}

12.3 运行结果

image.png

13. csin,csinf,csinl

13.1 函数说明

函数声明 函数功能
double complex csin (double complex z); 计算复数z的正弦(double complex)
float complex csinf (float complex z); 计算复数z的正弦(float complex)
long double complex csinl (long double complex z); 计算复数z的正弦(long double complex)

13.2 演示示例

#include <stdio.h>
#include <math.h>
#include <complex.h>

int main(void)
{
   
   
    double complex z, zcsin;
    z = 1.0 + 2.0 * I; // I 代指 虚数单位 i
    zcsin = csin(z); // 正弦

    float complex zf, zcsinf;
    zf = 1.0f + 2.0f * I;
    zcsinf = csinf(zf);

    long double complex zL, zcsinl;
    zL = (long double) 1.0 + (long double) 2.0 * I;
    zcsinl = csinl(zL);

    double zimag = cimag(zcsin);
    float zimagf = cimagf(zcsinf);
    long double zimagl = cimagl(zcsinl);
    if (zimag < 0) 
        printf("The sine of (%.4lf + %.4lfi) is (%.20lf - %.20lfi)\n", creal(z), cimag(z), creal(zcsin), fabs(zimag));
    else 
        printf("The sine of (%.4lf + %.4lfi) is (%.20lf + %.20lfi)\n", creal(z), cimag(z), creal(zcsin), zimag);       

    if (zimagf < 0) 
        printf("The sine of (%.4f + %.4fi) is (%.20f - %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcsinf), fabsf(zimagf));
    else 
        printf("The sine of (%.4f + %.4fi) is (%.20f + %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcsinf), zimagf);

    if (zimagl < 0) 
        printf("The sine of (%.4Lf + %.4Lfi) is (%.20Lf - %.20Lfi)", creall(zL), cimagl(zL), creall(zcsinl), fabsl(zimagl));
    else 
        printf("The sine of (%.4Lf + %.4Lfi) is (%.20Lf + %.20Lfi)", creall(zL), cimagl(zL), creall(zcsinl), zimagl);
    return 0;
}

13.3 运行结果

image.png

14. csinh,csinhf,csinhl

14.1 函数说明

函数声明 函数功能
double complex csinh (double complex z); 计算复数z的双曲正弦(double complex)
float complex csinhf (float complex z); 计算复数z的双曲正弦(float complex)
long double complex csinhl (long double complex z); 计算复数z的双曲正弦(long double complex)

14.2 演示示例

#include <stdio.h>
#include <math.h>
#include <complex.h>

int main(void)
{
   
   
    double complex z, zcsinh;
    z = 1.0 + 2.0 * I; // I 代指 虚数单位 i
    zcsinh = csinh(z); // 双曲正弦

    float complex zf, zcsinhf;
    zf = 1.0f + 2.0f * I;
    zcsinhf = csinhf(zf);

    long double complex zL, zcsinhl;
    zL = (long double) 1.0 + (long double) 2.0 * I;
    zcsinhl = csinhl(zL);

    double zimag = cimag(zcsinh);
    float zimagf = cimagf(zcsinhf);
    long double zimagl = cimagl(zcsinhl);
    if (zimag < 0) 
        printf("The hyperbolic sine of (%.4lf + %.4lfi) is (%.20lf - %.20lfi)\n", creal(z), cimag(z), creal(zcsinh), fabs(zimag));
    else 
        printf("The hyperbolic sine of (%.4lf + %.4lfi) is (%.20lf + %.20lfi)\n", creal(z), cimag(z), creal(zcsinh), zimag);       

    if (zimagf < 0) 
        printf("The hyperbolic sine of (%.4f + %.4fi) is (%.20f - %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcsinhf), fabsf(zimagf));
    else 
        printf("The hyperbolic sine of (%.4f + %.4fi) is (%.20f + %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcsinhf), zimagf);

    if (zimagl < 0) 
        printf("The hyperbolic sine of (%.4Lf + %.4Lfi) is (%.20Lf - %.20Lfi)", creall(zL), cimagl(zL), creall(zcsinhl), fabsl(zimagl));
    else 
        printf("The hyperbolic sine of (%.4Lf + %.4Lfi) is (%.20Lf + %.20Lfi)", creall(zL), cimagl(zL), creall(zcsinhl), zimagl);
    return 0;
}

14.3 运行结果

image.png

15. ctan,ctanf,ctanl

15.1 函数说明

函数声明 函数功能
double complex ctan (double complex z); 计算复数z的正切(double complex)
float complex ctanf (float complex z); 计算复数z的正切(float complex)
long double complex ctanl (long double complex z); 计算复数z的正切(long double complex)

15.2 演示示例

#include <stdio.h>
#include <math.h>
#include <complex.h>

int main(void)
{
   
   
    double complex z, zctan;
    z = 1.0 + 2.0 * I; // I 代指 虚数单位 i
    zctan = ctan(z); // 正切

    float complex zf, zctanf;
    zf = 1.0f + 2.0f * I;
    zctanf = ctanf(zf);

    long double complex zL, zctanl;
    zL = (long double) 1.0 + (long double) 2.0 * I;
    zctanl = ctanl(zL);

    double zimag = cimag(zctan);
    float zimagf = cimagf(zctanf);
    long double zimagl = cimagl(zctanl);
    if (zimag < 0) 
        printf("The tangent of (%.4lf + %.4lfi) is (%.20lf - %.20lfi)\n", creal(z), cimag(z), creal(zctan), fabs(zimag));
    else 
        printf("The tangent of (%.4lf + %.4lfi) is (%.20lf + %.20lfi)\n", creal(z), cimag(z), creal(zctan), zimag);       

    if (zimagf < 0) 
        printf("The tangent of (%.4f + %.4fi) is (%.20f - %.20fi)\n", crealf(zf), cimagf(zf), crealf(zctanf), fabsf(zimagf));
    else 
        printf("The tangent of (%.4f + %.4fi) is (%.20f + %.20fi)\n", crealf(zf), cimagf(zf), crealf(zctanf), zimagf);

    if (zimagl < 0) 
        printf("The tangent of (%.4Lf + %.4Lfi) is (%.20Lf - %.20Lfi)", creall(zL), cimagl(zL), creall(zctanl), fabsl(zimagl));
    else 
        printf("The tangent of (%.4Lf + %.4Lfi) is (%.20Lf + %.20Lfi)", creall(zL), cimagl(zL), creall(zctanl), zimagl);
    return 0;
}

15.3 运行结果

image.png

16. ctanh,ctanhf,ctanhl

16.1 函数说明

函数声明 函数功能
double complex ctanh (double complex z); 计算复数z的双曲正切(double complex)
float complex ctanhf (float complex z); 计算复数z的双曲正切(float complex)
long double complex ctanhl (long double complex z); 计算复数z的双曲正切(long double complex)

16.2 演示示例

#include <stdio.h>
#include <math.h>
#include <complex.h>

int main(void)
{
   
   
    double complex z, zctanh;
    z = 1.0 + 2.0 * I; // I 代指 虚数单位 i
    zctanh = ctanh(z); // 双曲正切

    float complex zf, zctanhf;
    zf = 1.0f + 2.0f * I;
    zctanhf = ctanhf(zf);

    long double complex zL, zctanhl;
    zL = (long double) 1.0 + (long double) 2.0 * I;
    zctanhl = ctanhl(zL);

    double zimag = cimag(zctanh);
    float zimagf = cimagf(zctanhf);
    long double zimagl = cimagl(zctanhl);
    if (zimag < 0) 
        printf("The inverse hyperbolic tangent of (%.4lf + %.4lfi) is (%.20lf - %.20lfi)\n", creal(z), cimag(z), creal(zctanh), fabs(zimag));
    else 
        printf("The inverse hyperbolic tangent of (%.4lf + %.4lfi) is (%.20lf + %.20lfi)\n", creal(z), cimag(z), creal(zctanh), zimag);       

    if (zimagf < 0) 
        printf("The inverse hyperbolic tangent of (%.4f + %.4fi) is (%.20f - %.20fi)\n", crealf(zf), cimagf(zf), crealf(zctanhf), fabsf(zimagf));
    else 
        printf("The inverse hyperbolic tangent of (%.4f + %.4fi) is (%.20f + %.20fi)\n", crealf(zf), cimagf(zf), crealf(zctanhf), zimagf);

    if (zimagl < 0) 
        printf("The inverse hyperbolic tangent of (%.4Lf + %.4Lfi) is (%.20Lf - %.20Lfi)", creall(zL), cimagl(zL), creall(zctanhl), fabsl(zimagl));
    else 
        printf("The inverse hyperbolic tangent of (%.4Lf + %.4Lfi) is (%.20Lf + %.20Lfi)", creall(zL), cimagl(zL), creall(zctanhl), zimagl);
    return 0;
}

16.3 运行结果

image.png

17. cexp,cexpf,cexpl

17.1 函数说明

函数声明 函数功能
double complex cexp (double complex z); 计算复数z的指数基数e(double complex)
float complex cexpf (float complex z); 计算复数z的指数基数e(float complex)
long double complex cexpl (long double complex z); 计算复数z的指数基数e(long double complex)

17.2 演示示例

#include <stdio.h>
#include <math.h>
#include <complex.h>

int main(void)
{
   
   
    double complex z, zcexp;
    z = 1.0 + 2.0 * I; // I 代指 虚数单位 i
    zcexp = cexp(z); // 指数基数e

    float complex zf, zcexpf;
    zf = 1.0f + 2.0f * I;
    zcexpf = cexpf(zf);

    long double complex zL, zcexpl;
    zL = (long double) 1.0 + (long double) 2.0 * I;
    zcexpl = cexpl(zL);

    double zimag = cimag(zcexp);
    float zimagf = cimagf(zcexpf);
    long double zimagl = cimagl(zcexpl);
    if (zimag < 0) 
        printf("The base-e exponential of (%.4lf + %.4lfi) is (%.20lf - %.20lfi)\n", creal(z), cimag(z), creal(zcexp), fabs(zimag));
    else 
        printf("The base-e exponential of (%.4lf + %.4lfi) is (%.20lf + %.20lfi)\n", creal(z), cimag(z), creal(zcexp), zimag);       

    if (zimagf < 0) 
        printf("The base-e exponential of (%.4f + %.4fi) is (%.20f - %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcexpf), fabsf(zimagf));
    else 
        printf("The base-e exponential of (%.4f + %.4fi) is (%.20f + %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcexpf), zimagf);

    if (zimagl < 0) 
        printf("The base-e exponential of (%.4Lf + %.4Lfi) is (%.20Lf - %.20Lfi)", creall(zL), cimagl(zL), creall(zcexpl), fabsl(zimagl));
    else 
        printf("The base-e exponential of (%.4Lf + %.4Lfi) is (%.20Lf + %.20Lfi)", creall(zL), cimagl(zL), creall(zcexpl), zimagl);
    return 0;
}

17.3 运行结果

image.png

18. clog,clogf,clogl

18.1 函数说明

函数声明 函数功能
double complex clog (double complex z); 计算复数z的自然对数(以e为底)(double complex)
float complex clogf (float complex z); 计算复数z的自然对数(以e为底)(float complex)
long double complex clogl (long double complex z); 计算复数z的自然对数(以e为底)(long double complex)

18.2 演示示例

#include <stdio.h>
#include <math.h>
#include <complex.h>

int main(void)
{
   
   
    double complex z, zclog;
    z = 1.0 + 2.0 * I; // I 代指 虚数单位 i
    zclog = clog(z); // 自然对数(以e为底)

    float complex zf, zclogf;
    zf = 1.0f + 2.0f * I;
    zclogf = clogf(zf);

    long double complex zL, zclogl;
    zL = (long double) 1.0 + (long double) 2.0 * I;
    zclogl = clogl(zL);

    double zimag = cimag(zclog);
    float zimagf = cimagf(zclogf);
    long double zimagl = cimagl(zclogl);
    if (zimag < 0) 
        printf("The natural (base-e) logarithm of (%.4lf + %.4lfi) is (%.20lf - %.20lfi)\n", creal(z), cimag(z), creal(zclog), fabs(zimag));
    else 
        printf("The natural (base-e) logarithm of (%.4lf + %.4lfi) is (%.20lf + %.20lfi)\n", creal(z), cimag(z), creal(zclog), zimag);       

    if (zimagf < 0) 
        printf("The natural (base-e) logarithm of (%.4f + %.4fi) is (%.20f - %.20fi)\n", crealf(zf), cimagf(zf), crealf(zclogf), fabsf(zimagf));
    else 
        printf("The natural (base-e) logarithm of (%.4f + %.4fi) is (%.20f + %.20fi)\n", crealf(zf), cimagf(zf), crealf(zclogf), zimagf);

    if (zimagl < 0) 
        printf("The natural (base-e) logarithm of (%.4Lf + %.4Lfi) is (%.20Lf - %.20Lfi)", creall(zL), cimagl(zL), creall(zclogl), fabsl(zimagl));
    else 
        printf("The natural (base-e) logarithm of (%.4Lf + %.4Lfi) is (%.20Lf + %.20Lfi)", creall(zL), cimagl(zL), creall(zclogl), zimagl);
    return 0;
}

18.3 运行结果

image.png

19. conj,conjf,conjl

19.1 函数说明

函数声明 函数功能
double complex conj (double complex z); 计算复数z的共轭(double complex)
float complex conjf (float complex z); 计算复数z的共轭(float complex)
long double complex conjl (long double complex z); 计算复数z的共轭(long double complex)

19.2 演示示例

#include <stdio.h>
#include <math.h>
#include <complex.h>

int main(void)
{
   
   
    double complex z, zconj;
    z = 1.0 + 2.0 * I; // I 代指 虚数单位 i
    zconj = conj(z); // 共轭

    float complex zf, zconjf;
    zf = 1.0f + 2.0f * I;
    zconjf = conjf(zf);

    long double complex zL, zconjl;
    zL = (long double) 1.0 + (long double) 2.0 * I;
    zconjl = conjl(zL);

    double zimag = cimag(zconj);
    float zimagf = cimagf(zconjf);
    long double zimagl = cimagl(zconjl);
    if (zimag < 0) 
        printf("The conjugate of (%.4lf + %.4lfi) is (%.4lf - %.4lfi)\n", creal(z), cimag(z), creal(zconj), fabs(zimag));
    else 
        printf("The conjugate of (%.4lf + %.4lfi) is (%.4lf + %.4lfi)\n", creal(z), cimag(z), creal(zconj), zimag);       

    if (zimagf < 0) 
        printf("The conjugate of (%.4f + %.4fi) is (%.4f - %.4fi)\n", crealf(zf), cimagf(zf), crealf(zconjf), fabsf(zimagf));
    else 
        printf("The conjugate of (%.4f + %.4fi) is (%.4f + %.4fi)\n", crealf(zf), cimagf(zf), crealf(zconjf), zimagf);

    if (zimagl < 0) 
        printf("The conjugate of (%.4Lf + %.4Lfi) is (%.4Lf - %.4Lfi)", creall(zL), cimagl(zL), creall(zconjl), fabsl(zimagl));
    else 
        printf("The conjugate of (%.4Lf + %.4Lfi) is (%.4Lf + %.4Lfi)", creall(zL), cimagl(zL), creall(zconjl), zimagl);
    return 0;
}

19.3 运行结果

image.png

20. cpow,cpowf,cpowl

20.1 函数说明

函数声明 函数功能
double complex cpow (double complex x, double complex y); 计算x的y次方值 (double complex)
float complex cpowf (float complex x, float complex y); 计算x的y次方值 (float complex)
long double complex cpowl (long double complex x, long double complex y); 计算x的y次方值 (double complex)

20.2 演示示例

#include <stdio.h>
#include <math.h>
#include <complex.h>

int main(void)
{
   
   
    double complex x, y, z;
    x = 1.0 + 2.0 * I; // I 代指 虚数单位 i
    y = 2.0 + 1.0 * I; 
    z = cpow(x, y); // x的y次方值

    float complex xf, yf, zf;
    xf = 1.0f + 2.0f * I;
    yf = 2.0f + 1.0f * I; 
    zf = cpowf(xf, yf);

    long double complex xL, yL, zL;
    xL = (long double) 1.0 + (long double) 2.0 * I;
    yL = (long double) 2.0 + (long double) 1.0 * I;
    zL = cpowl(xL, yL);

    double zimag = cimag(z);
    float zimagf = cimagf(zf);
    long double zimagl = cimagl(zL);
    if (zimag < 0) 
        printf("the value of (%.4lf + %.4lfi) raised to the (%.4lf + %.4lfi) power is (%.20lf - %.20lfi)\n", 
            creal(x), cimag(x), creal(y), cimag(y), creal(z), fabs(zimag));
    else 
        printf("the value of (%.4lf + %.4lfi) raised to the (%.4lf + %.4lfi) power is (%.20lf + %.20lfi)\n", 
            creal(x), cimag(x), creal(y), cimag(y), creal(z), zimag);       

    if (zimagf < 0) 
        printf("the value of (%.4f + %.4fi) raised to the (%.4f + %.4fi) power is (%.20f - %.20fi)\n", 
            crealf(xf), cimagf(xf), crealf(yf), cimagf(yf), crealf(zf), fabs(zimagf));
    else 
        printf("the value of (%.4f + %.4fi) raised to the (%.4f + %.4fi) power is (%.20f + %.20fi)\n", 
            crealf(xf), cimagf(xf), crealf(yf), cimagf(yf), crealf(zf), zimagf);
    if (zimagl < 0) 
        printf("the value of (%.4Lf + %.4Lfi) raised to the (%.4Lf + %.4Lfi) power is (%.20Lf - %.20Lfi)\n", 
            creall(xL), cimagl(xL), creall(yL), cimagl(yL), creall(zL), fabs(zimagl));
    else 
        printf("the value of (%.4Lf + %.4Lfi) raised to the (%.4Lf + %.4Lfi) power is (%.20Lf + %.20Lfi)\n", 
            creall(xL), cimagl(xL), creall(yL), cimagl(yL), creall(zL), zimagl);    
    return 0;
}

20.3 运行结果

image.png

21. cproj,cprojf,cprojl

21.1 函数说明

函数声明 函数功能
double complex cproj (double complex z); 计算复数z在黎曼球面上的投影(double complex)
float complex cprojf (float complex z); 计算复数z在黎曼球面上的投影(float complex)
long double complex cprojl (long double complex z); 计算复数z在黎曼球面上的投影(long double complex)

黎曼球面上的投影是一种将三维空间中的黎曼球面与二维复平面通过立体投影方式建立一一对应关系的映射。

21.2 演示示例

#include <stdio.h>
#include <math.h>
#include <complex.h>

int main(void)
{
   
   
    double complex z, zcproj;
    z = 1.0 + 2.0 * I; // I 代指 虚数单位 i
    zcproj = cproj(z); // 计算复数z在黎曼球面上的投影

    float complex zf, zcprojf;
    zf = NAN + INFINITY * I;
    zcprojf = cprojf(zf);

    long double complex zL, zcprojl;
    zL = INFINITY + (long double) 3.0 * I; 
    zcprojl = cprojl(zL); // 结果相当于  INFINITY + i*copysign(0.0, cimag(z)).

    double zimag = cimag(zcproj);
    float zimagf = cimagf(zcprojf);
    long double zimagl = cimagl(zcprojl);
    if (zimag < 0) 
        printf("The projection of the (%.4lf + %.4lf i) onto the Riemann sphere is (%.4lf - %.4lf i)\n", creal(z), cimag(z), creal(zcproj), fabs(zimag));
    else 
        printf("The projection of the (%.4lf + %.4lf i) onto the Riemann sphere is (%.4lf + %.4lf i)\n", creal(z), cimag(z), creal(zcproj), zimag);       

    if (zimagf < 0) 
        printf("The projection of the (%.4f + %.4f i) onto the Riemann sphere is (%.4f - %.4f i)\n", crealf(zf), cimagf(zf), crealf(zcprojf), fabsf(zimagf));
    else 
        printf("The projection of the (%.4f + %.4f i) onto the Riemann sphere is (%.4f + %.4f i)\n", crealf(zf), cimagf(zf), crealf(zcprojf), zimagf);

    if (zimagl < 0) 
        printf("The projection of the (%.4Lf + %.4Lf i) onto the Riemann sphere is (%.4Lf - %.4Lf i)", creall(zL), cimagl(zL), creall(zcprojl), fabsl(zimagl));
    else 
        printf("The projection of the (%.4Lf + %.4Lf i) onto the Riemann sphere is (%.4Lf + %.4Lf i)", creall(zL), cimagl(zL), creall(zcprojl), zimagl);
    return 0;
}

21.3 运行结果

image.png

22. csqrt,csqrtf,csqrtl

22.1 函数说明

函数声明 函数功能
double complex csqrt (double complex z); 计算复数z的平方根(double complex)
float complex csqrtf (float complex z); 计算复数z的平方根(float complex)
long double complex csqrtl (long double complex z); 计算复数z的平方根(long double complex)

22.2 演示示例

#include <stdio.h>
#include <math.h>
#include <complex.h>

int main(void)
{
   
   
    double complex z, zcsqrt;
    z = 9.0 + 9.0 * I; // I 代指 虚数单位 i
    zcsqrt = csqrt(z); // 平方根

    float complex zf, zcsqrtf;
    zf = 4.0f + 4.0f * I;
    zcsqrtf = csqrtf(zf);

    long double complex zL, zcsqrtl;
    zL = (long double) 16.0 + (long double) 16.0 * I;
    zcsqrtl = csqrtl(zL);

    double zimag = cimag(zcsqrt);
    float zimagf = cimagf(zcsqrtf);
    long double zimagl = cimagl(zcsqrtl);
    if (zimag < 0) 
        printf("The square root of (%.4lf + %.4lfi) is (%.20lf - %.20lfi)\n", creal(z), cimag(z), creal(zcsqrt), fabs(zimag));
    else 
        printf("The square root of (%.4lf + %.4lfi) is (%.20lf + %.20lfi)\n", creal(z), cimag(z), creal(zcsqrt), zimag);       

    if (zimagf < 0) 
        printf("The square root of (%.4f + %.4fi) is (%.20f - %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcsqrtf), fabsf(zimagf));
    else 
        printf("The square root of (%.4f + %.4fi) is (%.20f + %.20fi)\n", crealf(zf), cimagf(zf), crealf(zcsqrtf), zimagf);

    if (zimagl < 0) 
        printf("The square root of (%.4Lf + %.4Lfi) is (%.20Lf - %.20Lfi)", creall(zL), cimagl(zL), creall(zcsqrtl), fabsl(zimagl));
    else 
        printf("The square root of (%.4Lf + %.4Lfi) is (%.20Lf + %.20Lfi)", creall(zL), cimagl(zL), creall(zcsqrtl), zimagl);
    return 0;
}

22.3 运行结果

image.png

参考

  1. 【MATH-标准C库】
目录
相关文章
|
3月前
|
C语言 C++
C语言 之 内存函数
C语言 之 内存函数
44 3
|
1月前
|
存储 C语言 开发者
【C语言】字符串操作函数详解
这些字符串操作函数在C语言中提供了强大的功能,帮助开发者有效地处理字符串数据。通过对每个函数的详细讲解、示例代码和表格说明,可以更好地理解如何使用这些函数进行各种字符串操作。如果在实际编程中遇到特定的字符串处理需求,可以参考这些函数和示例,灵活运用。
62 10
|
1月前
|
存储 程序员 C语言
【C语言】文件操作函数详解
C语言提供了一组标准库函数来处理文件操作,这些函数定义在 `<stdio.h>` 头文件中。文件操作包括文件的打开、读写、关闭以及文件属性的查询等。以下是常用文件操作函数的详细讲解,包括函数原型、参数说明、返回值说明、示例代码和表格汇总。
51 9
|
1月前
|
存储 Unix Serverless
【C语言】常用函数汇总表
本文总结了C语言中常用的函数,涵盖输入/输出、字符串操作、内存管理、数学运算、时间处理、文件操作及布尔类型等多个方面。每类函数均以表格形式列出其功能和使用示例,便于快速查阅和学习。通过综合示例代码,展示了这些函数的实际应用,帮助读者更好地理解和掌握C语言的基本功能和标准库函数的使用方法。感谢阅读,希望对你有所帮助!
40 8
|
1月前
|
C语言 开发者
【C语言】数学函数详解
在C语言中,数学函数是由标准库 `math.h` 提供的。使用这些函数时,需要包含 `#include <math.h>` 头文件。以下是一些常用的数学函数的详细讲解,包括函数原型、参数说明、返回值说明以及示例代码和表格汇总。
50 6
|
1月前
|
存储 C语言
【C语言】输入/输出函数详解
在C语言中,输入/输出操作是通过标准库函数来实现的。这些函数分为两类:标准输入输出函数和文件输入输出函数。
242 6
|
1月前
|
存储 缓存 算法
【C语言】内存管理函数详细讲解
在C语言编程中,内存管理是至关重要的。动态内存分配函数允许程序在运行时请求和释放内存,这对于处理不确定大小的数据结构至关重要。以下是C语言内存管理函数的详细讲解,包括每个函数的功能、标准格式、示例代码、代码解释及其输出。
64 6
|
1月前
|
C语言 开发者
【C语言】断言函数 -《深入解析C语言调试利器 !》
断言(assert)是一种调试工具,用于在程序运行时检查某些条件是否成立。如果条件不成立,断言会触发错误,并通常会终止程序的执行。断言有助于在开发和测试阶段捕捉逻辑错误。
41 5
|
2月前
|
存储 人工智能 算法
数据结构实验之C 语言的函数数组指针结构体知识
本实验旨在复习C语言中的函数、数组、指针、结构体与共用体等核心概念,并通过具体编程任务加深理解。任务包括输出100以内所有素数、逆序排列一维数组、查找二维数组中的鞍点、利用指针输出二维数组元素,以及使用结构体和共用体处理教师与学生信息。每个任务不仅强化了基本语法的应用,还涉及到了算法逻辑的设计与优化。实验结果显示,学生能够有效掌握并运用这些知识完成指定任务。
60 4
|
2月前
|
C语言
c语言调用的函数的声明
被调用的函数的声明: 一个函数调用另一个函数需具备的条件: 首先被调用的函数必须是已经存在的函数,即头文件中存在或已经定义过; 如果使用库函数,一般应该在本文件开头用#include命令将调用有关库函数时在所需要用到的信息“包含”到本文件中。.h文件是头文件所用的后缀。 如果使用用户自己定义的函数,而且该函数与使用它的函数在同一个文件中,一般还应该在主调函数中对被调用的函数做声明。 如果被调用的函数定义出现在主调函数之前可以不必声明。 如果已在所有函数定义之前,在函数的外部已做了函数声明,则在各个主调函数中不必多所调用的函数在做声明
39 6