算法与数据结构高手养成:朴素的贪心法(上)最优化策略

简介: 算法与数据结构高手养成:朴素的贪心法(上)最优化策略

朴素的贪心法(上)最优化策略

常见贪心法归类

1.最优化策略——每一次都采用当前最优决策

2.构造法——通过总结和归纳找到规律,直接推导出答案

3.二分答案——通过答案反推,验证合法性从而确定最优解

何为“朴素”贪心

  • 所谓“朴素”,就是可以通过确定性的贪心步骤得出最优解
  • 有些问题很难通过确定性贪心步骤得到最优解,但可以通过在贪心时加入随机因素(不是每次都选最优策略,而是几种较好策略中随机选择一种),来得到近似最优解
  • 当随机次数足够多时,这个近似最优解就会无限逼近最优解这个方法称为随机贪心法,后续会

最优化策略:取石子

每次都选取最大~

取石子(改)

由于条件限制,不能做到每次都拿最多,如果第一次拿3,第二次拿4时,第三次就不能再拿了

不适用贪心,但动态规划可解

最优化策略适用条件

第一,有明确的阶段,且每个阶段的决策都很清晰

  • 阶段一定是按顺序执行的
  • 对于第K(1≤K≤N)个阶段,前K轮的最优决策集合称为局部最优解当K=N时,称为全局最优解

第二,一个阶段的局部最优解,一定是从前面阶段的局部最优解得到的,这个特性称之为最优子结构

  • 例:取石子里,第二轮如果取4,那么无论第三轮取什么,总数一定不是最多。只有第二轮取5(局部最优解)第三轮才有可能产生总数最多的情况
  • 反例:取石子(改)里,第二轮取5是当前最优,但第三轮取4是最优。只有第二轮不取当前最优时,第三轮才能取到最优——不适用贪心法

第三,后面阶段的决策,不会影响到前面阶段的决策,这个特性称为无后效性

  • 例:无论第二轮取哪一堆,都不影响第一轮取的石子
  • 反例:题目修改为“每种数目的石子只能取一次,比如这一次取了5个,下一次就不能再取5个”——后面选择跟前面冲突的话,就需要返回修改之前的选择

最优化策略:分析步骤

1.划分问题的阶段决策

2.验证最优子结构无后效性

3.通过比较和判断,确定每一步的最优策略

例题:机器工厂(USACO)

步骤1:划分阶段和决策

  • 阶段:周数 K(1 ≤K≤ N)
  • 决策:第 K周生产多少台机器

步骤2:验证最优子结构/无后效性

  • 无后效性:满足
  • 因为第 K 周生产几台都不影响第1~K-1周的交付(不可能后面生产的穿越回去交付前面的订单)
  • 最优子结构呢?

局部最优解定义:完成前 K周订单的总成本最小(K=N)时就是全局最优解 在这个定义下,局部最优解一定是刚好满足K周订单需求即可不会额外生产供以后交付,否则会浪费

不满足最优子结构?

步骤2.5:修改决策

  • 问题出在决策:不能只满足本周的需求而不考虑后续需要
  • 反向思考1:本周要交付的机器可以是本周生产,也可以是之前生产
  • 反向思考2:不管前面是哪周生产,成本都可以直接算出来(等于该周生产成本+储藏成本x周数差)

例:前三周每个机器生产成本分别是1,5,6,储藏成本是2

第三周要交付的机器如果在当周生产,成本是6,如果要在第二周生产,成本是5+2x1=7;如果要在第一周生产,成本是1+2x2=5

所以,第三周交付的机器,在第一周生产最省钱

步骤2.5:重新验证最优子结构/无后效性

  • 决策修改为:第K周要交付的机器应该在第几周生产
  • 无后效性仍然满足
  • 最优子结构也满足:前K周总成本最低的情况,一定是从前K-1周总成本最低的情况推出来的

步骤3:最优化策略

  • 对于第K周,计算本周交付的机器在第i(1≤i≤K)周生产并储藏到第K周,分别所需要的成本
  • 选择成本最低的一周,由它来生产第K周需要交付的订单
  • 将这个最低的成本加上前K-1周的最低总成本,得到前K周的最低总成本(局部最优解)。K=N时得到的就是最终答案

虽然问题解决了,但是这个方法的效率还有提升空间

决策时,选择某一成本最低的一周的时候,我们刚刚采用的策略是挨个计算出每一周的成本,从而选择最小的,涉及了很多重复计算,成本的变化是有一定规律的,并不需要每次都进行计算~

步骤3:最优化策略(改进)

直接把时间复杂度降低了一个数量级~时间复杂度对O(n)

代码:机器工厂(C++)

    int n, s; // 声明变量n和s,分别表示总共的星期数和保养一台机器的费用
    cin >> n >> s; // 输入总星期数和保养费用
    int p, y, min_p = INT_MAX - s; // 声明变量p、y和min_p,min_p初始化为INT_MAX-s,用来存放当前最小的生产成本
    long long total = 0; // 声明变量total用来存放总花费
    for (int i = 0 ;i < n; i++) // 循环n次,表示n个星期
    {
        cin >> p >> y; // 输入当前星期生产一台机器的成本p和订单数量y
        min_p = min(min_p + s, p); // 对当前最小成本进行更新,考虑了保养费用
        total += min_p * y; // 计算当前星期的总花费,加上当前最小成本乘以订单数量
    }
    cout << total << endl; // 输出总花费
 
    return 0;

希望对你有帮助!加油!

若您认为本文内容有益,请不吝赐予赞同并订阅,以便持续接收有价值的信息。衷心感谢您的关注和支持!

目录
相关文章
|
22天前
|
算法 数据处理 C语言
C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合
本文深入解析了C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合,旨在帮助读者掌握这一高效的数据处理方法。
34 1
|
26天前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
77 4
|
23天前
|
存储 算法 搜索推荐
Python 中数据结构和算法的关系
数据结构是算法的载体,算法是对数据结构的操作和运用。它们共同构成了计算机程序的核心,对于提高程序的质量和性能具有至关重要的作用
|
23天前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
20天前
|
算法
通过matlab分别对比PSO,反向学习PSO,多策略改进反向学习PSO三种优化算法
本项目使用MATLAB2022A版本,对比分析了PSO、反向学习PSO及多策略改进反向学习PSO三种优化算法的性能,主要通过优化收敛曲线进行直观展示。核心代码实现了标准PSO算法流程,加入反向学习机制及多种改进策略,以提升算法跳出局部最优的能力,增强全局搜索效率。
|
22天前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
54 1
|
1月前
|
算法
优化策略:揭秘钢条切割与饼干分发的算法艺术
本文探讨了钢条切割与饼干分发两个经典算法问题,展示了算法在解决实际问题中的应用。钢条切割问题通过动态规划方法,计算出不同长度钢条的最大盈利切割方式,考虑焊接成本后问题更为复杂。饼干分发问题则采用贪心算法,旨在尽可能多的喂饱孩子,分别讨论了每个孩子一块饼干和最多两块饼干的情况。这些问题不仅体现了数学的精妙,也展示了工程师的智慧与创造力。
37 4
|
17天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
23天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。
|
3天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。