网络原理(7)——以太网数据帧和DNS协议(数据链路层和应用层)

本文涉及的产品
.cn 域名,1个 12个月
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 网络原理(7)——以太网数据帧和DNS协议(数据链路层和应用层)

一、以太网数据帧(数据链路层)


       以太网横跨了数据链路层和物理层,这里只做简单介绍,因为普通程序员用不到这一块,除非是做交换机开发的;下图是数据帧的格式。

目的地址和源地址:和IP协议上表达意思差不多,但这里是mac地址。

数据:以太网数据帧的载荷最小46字节,最大1500字节;这里的大小限制是因为受到了物理设备的特性46字节是因为ARP1500字节是因为硬件的限制(和以太网的网口 / 网线这些物理设备有关系),称为“MTU”在IP数据报拆包组包的过程中,原因往往不是因为自身大小超过64KB了,而是因为MTU的原因。(数据链路层不仅仅只有以太网这种协议,还有许多其他的协议,不同的协议,MTU也会有所差异)。

类型:标识了载荷数据的含义。有以下三种(上图的三种):

       IP数据报:如果载荷类型是这个,此时以太网数据帧大概率是能够携带业务数据的报文(大概率携带的是业务数据,也可能携带的是syn这种)。

ARP和RARP可以认为这两个横跨了 网络层 和 数据链路层 的协议。

       ARP:效果是让路由器 / 交换机 建立一个内部的结构,可以通过映射,找到mac的地址,映射关系:IP -> mac(类似哈希表这种)。

       RARP:效果也是让路由器 / 交换机 建立一个内部的结构,也是映射,不过找到的是IP地址,映射关系:mac -> IP

       前面通过路由表,可以拿着IP查询下一步走哪个网络接口(通常指路由器的 WAN / LAN口);但也还需要根据当前环境,获取当前对应要转发的mac地址(需要知道通向的设备具体的mac地址)。

       数据链路层这里,引用的地址协议和IP协议不一样,它有它自己的独立的一套地址体系:mac地址(或物理地址)mac地址 和 IP地址是独立的两条地址体系

       其实这两个地址协议是可以合并在一起的,但是因为历史的原因,这两个地址协议是两伙人搞出来的,而且既然搞出来了,就拿出来用了。

       之前说的IP协议 侧重于 全局的转发,从起点到终点,这整个转发过程,是通过IP协议完成的;而mac协议 侧重于 局部的转发,两个相邻的设备之间的转发(一个电脑连着路由器,电脑和路由器就是相邻的关系)。

       因为mac地址是6个字节的地址,所以可以表示的地址的个数比IP地址多很多,大概是:42亿9000万 * 65535,所以mac地址还是很充足够用的,这里用的就是静态地址硬件设备网卡,在出厂的时候就已经把mac地址给写死,所以每个电脑设备上的mac地址都是唯一的网卡和mac地址也是一对一绑定的;基于mac地址,有些程序,可以通过mac地址来作为你机器的身份表示,例如外挂,只有在你电脑上插u盘才能用,其他电脑插上就不能用,原因就是制作外挂者这里的服务器,用户这边的客户端,服务器利用mac地址就知道哪些人是从自己这买的外挂,然后允许他用外挂(声明:制作外挂、售卖外挂均为违法行为,请遵纪守法,做好合法公民)

       mac地址是用16进制方式表示的,字节之间则是用 “-” 或 “:” 来分隔的,如图是我电脑上的mac地址(Windows系统的物理地址就是mac地址):

       这里的mac地址和IP地址也有其他方面的不同,如图是以太网数据帧:

      源 / 目的mac地址类似一个小阶段的目标,而源 / 目的IP是类似终极目标这种。举个例子:

我要去陕西,途中我要经过:广东 -> 湖南 -> 湖北 -> 陕西。

       这里有不同的阶段,对应不同的mac地址,但IP地址一直都是相同的,如下:

       广东 -> 湖南        源IP:广东,目的IP:陕西        源mac:广东,目的mac:湖南

       湖南 -> 湖北        源IP:广东,目的IP:陕西        源mac:湖南,目的mac:湖北

       湖北 -> 陕西        源IP:广东,目的IP:陕西        源mac:湖北,目的mac:陕西

       mac地址和IP地址的不同如上(还有其他的不同),mac地址这里侧重的是局部(相邻)的转发(两个相邻的设备)IP地址这里侧重的是全局的转发,从起到到终点,这转发的整一个过程。        


二、DNS协议(域名解析系统,应用层协议)


       如果使用IP地址来描述设备的地址,又长又难记,如果访问某个服务器,需要记住它的IP地址的话,就很难记住,也可能记混的现象;所以,有更好的方法:使用域名(word),通过域名,把域名转换成对应的IP地址,就好记很多,也不容易错。

       DNS协议就是域名解析的一个协议,在上古时期,那时候是通过host文件把域名和IP一一对应起来,每一行都有域名和IP每次访问某个域名,就会通过这个域名,在host文件中查找对应的IP,从而找到这个访问设备在网络中位置

       但是随着互联网发展的越来越快,域名和服务器都越来越多,此时维护的成本就很大,所以大佬们就干脆 搭建一个服务器,提供域名解析的功能(之前的host内容也放到服务器上了),你的设备想要访问某个域名,就会先到域名解析服务器(DNS服务器)上查一下,找到对应的IP,拿着这个IP访问即可。

       但是,全世界那么多人,如果都访问这个DNS服务器,那不会很容易挂了,它能抗住这么多请求吗?显然是不能的,其实DNS服务器并非只有一份,而是有很多份。如下解释:

       最开始的DNS服务器称为根域名服务器这里的内容最全然后各个国家的运营商,就根据这个根域名服务器的内容,搭建出镜像服务器网民上网时,一般就是访问你附近的运营商搭建的镜像DNS服务器,而镜像服务器也会定期从根DNS服务器中同步数据

       域名还分为一级,二级,三级.....,这样就可以控制每个服务器管理的数据都差不多,如图:

       上图的com是一级域名,sogou是二级域名,www是三级域名其中根域名服务器里的内容非常重要,如果把其中一部分内容删除掉,就可能会导致一个地区 / 一整个国家网络瘫痪,无法上网。而根域名服务器一共有13个,大部分都是美国人维护的,所以,这也是我国迫切要升级IPv6的原因。

       有时候会出现一种情况,QQ、微信能等的上去,但是网页却打不开,可能就是你附近的运营商的DNS服务器挂了,这时候我们可以换个DNS服务器地址,如:8.8.8.8,这是谷歌搞得一套DNS镜像服务器,换完后,可能就可以打开网页了。

相关文章
|
1月前
|
安全 虚拟化
在数字化时代,网络项目的重要性日益凸显。本文从前期准备、方案内容和注意事项三个方面,详细解析了如何撰写一个优质高效的网络项目实施方案,帮助企业和用户实现更好的体验和竞争力
在数字化时代,网络项目的重要性日益凸显。本文从前期准备、方案内容和注意事项三个方面,详细解析了如何撰写一个优质高效的网络项目实施方案,帮助企业和用户实现更好的体验和竞争力。通过具体案例,展示了方案的制定和实施过程,强调了目标明确、技术先进、计划周密、风险可控和预算合理的重要性。
42 5
|
1月前
|
SQL 安全 网络安全
网络安全的护城河:漏洞防御与加密技术的深度解析
【10月更文挑战第37天】在数字时代的浪潮中,网络安全成为守护个人隐私与企业资产的坚固堡垒。本文将深入探讨网络安全的两大核心要素——安全漏洞和加密技术,以及如何通过提升安全意识来强化这道防线。文章旨在揭示网络攻防战的复杂性,并引导读者构建更为稳固的安全体系。
41 1
|
14天前
|
机器学习/深度学习 人工智能 算法
深入解析图神经网络:Graph Transformer的算法基础与工程实践
Graph Transformer是一种结合了Transformer自注意力机制与图神经网络(GNNs)特点的神经网络模型,专为处理图结构数据而设计。它通过改进的数据表示方法、自注意力机制、拉普拉斯位置编码、消息传递与聚合机制等核心技术,实现了对图中节点间关系信息的高效处理及长程依赖关系的捕捉,显著提升了图相关任务的性能。本文详细解析了Graph Transformer的技术原理、实现细节及应用场景,并通过图书推荐系统的实例,展示了其在实际问题解决中的强大能力。
97 30
|
18天前
|
SQL 安全 算法
网络安全之盾:漏洞防御与加密技术解析
在数字时代的浪潮中,网络安全和信息安全成为维护个人隐私和企业资产的重要防线。本文将深入探讨网络安全的薄弱环节—漏洞,并分析如何通过加密技术来加固这道防线。文章还将分享提升安全意识的重要性,以预防潜在的网络威胁,确保数据的安全与隐私。
35 2
|
20天前
|
安全 算法 网络安全
网络安全的盾牌与剑:漏洞防御与加密技术深度解析
在数字信息的海洋中,网络安全是航行者不可或缺的指南针。本文将深入探讨网络安全的两大支柱——漏洞防御和加密技术,揭示它们如何共同构筑起信息时代的安全屏障。从最新的网络攻击手段到防御策略,再到加密技术的奥秘,我们将一起揭开网络安全的神秘面纱,理解其背后的科学原理,并掌握保护个人和企业数据的关键技能。
27 3
|
22天前
|
网络协议
网络通信的基石:TCP/IP协议栈的层次结构解析
在现代网络通信中,TCP/IP协议栈是构建互联网的基础。它定义了数据如何在网络中传输,以及如何确保数据的完整性和可靠性。本文将深入探讨TCP/IP协议栈的层次结构,揭示每一层的功能和重要性。
53 5
|
24天前
|
网络协议 安全 文件存储
动态DNS(DDNS)技术在当前网络环境中日益重要,它允许使用动态IP地址的设备通过固定域名访问
动态DNS(DDNS)技术在当前网络环境中日益重要,它允许使用动态IP地址的设备通过固定域名访问,即使IP地址变化,也能通过DDNS服务保持连接。适用于家庭网络远程访问设备及企业临时或移动设备管理,提供便捷性和灵活性。示例代码展示了如何使用Python实现基本的DDNS更新。尽管存在服务可靠性和安全性挑战,DDNS仍极大提升了网络资源的利用效率。
47 6
|
22天前
|
监控 网络协议 网络性能优化
网络通信的核心选择:TCP与UDP协议深度解析
在网络通信领域,TCP(传输控制协议)和UDP(用户数据报协议)是两种基础且截然不同的传输层协议。它们各自的特点和适用场景对于网络工程师和开发者来说至关重要。本文将深入探讨TCP和UDP的核心区别,并分析它们在实际应用中的选择依据。
51 3
|
26天前
|
SQL 监控 安全
网络安全的盾牌与利剑:漏洞防御与加密技术解析
在数字时代的洪流中,网络安全如同一场没有硝烟的战争。本文将深入探讨网络安全的核心议题,从网络漏洞的发现到防御策略的实施,以及加密技术的运用,揭示保护信息安全的关键所在。通过实际案例分析,我们将一窥网络攻击的手段和防御的艺术,同时提升个人与企业的安全意识,共同构筑一道坚固的数字防线。
|
3天前
|
传感器
Modbus协议深入解析
Modbus协议是由Modicon公司(现施耐德电气)于1979年发明的串行通信协议,主要用于工业自动化系统中的PLC通信。本文深入解析了Modbus协议的主从模式、数据类型(线圈、离散输入、保持寄存器、输入寄存器)、帧结构和通信过程,并介绍了其应用场景和重要性。
11 0

推荐镜像

更多