【算法优选】 动态规划之子数组、子串系列——壹

简介: 【算法优选】 动态规划之子数组、子串系列——壹

🎋前言

动态规划相关题目都可以参考以下五个步骤进行解答:

  1. 状态表示
  2. 状态转移⽅程
  3. 初始化
  4. 填表顺序
  5. 返回值

后面题的解答思路也将按照这五个步骤进行讲解。

🎋最大子数组和

🚩题目描述

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

子数组是数组中的一个连续部分。

  • 示例 1:
    输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
    输出:6
    解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。
  • 示例 2:
    输入:nums = [1]
    输出:1
  • 示例 3:
    输入:nums = [5,4,-1,7,8]
    输出:23
class Solution {
    public int maxSubArray(int[] nums) {
    }
}

🚩算法思路

  1. 状态表示:

对于线性 dp ,我们可以⽤「经验 + 题⽬要求」来定义状态表示:

  • 以某个位置为结尾,进行一系列操作;
  • 以某个位置为起点,进行一系列操作。

这⾥我们选择比较常用的方式,以「某个位置为结尾」,结合「题目要求」,定义⼀个状态表示:

dp[i] 表⽰:以 i 位置元素为结尾的「所有⼦数组」中和的最⼤和。

  1. 状态转移⽅程:

dp[i] 的所有可能可以分为以下两种:

  • 子数组的长度为 1 :此时 dp[i] = nums[i] ;
  • 子数组的长度⼤大于 1 :此时 dp[i] 应该等于 以 i - 1 做结尾的「所有⼦数组」中和 的最⼤值再加上 nums[i] ,也就是 dp[i - 1] + nums[i] 。

由于我们要的是「最大值」,因此应该是两种情况下的最⼤值,因此可得转移⽅程:

  • dp[i] = max(nums[i], dp[i - 1] + nums[i]) 。
  1. 初始化:

可以在最前⾯加上⼀个「辅助结点」,帮助我们初始化。使用这种技巧要注意两个点:

  • 辅助结点里面的值要「保证后续填表是正确的」;
  • 「下标的映射关系」。

在本题中,最前⾯加上⼀个格⼦,并且让 dp[0] = 0 即可。

  1. 填表顺序

根据「状态转移⽅程」易得,填表顺序为「从左往右」。

  1. 返回值:

状态表示为「以 i 为结尾的所有⼦数组」的最⼤值,但是最大子数组和的结尾我们是不确定的。

因此我们需要返回整个 dp 表中的最⼤值。

🚩代码实现

class Solution {
    public int maxSubArray(int[] nums) {
        int[] dp = new int[nums.length + 1];
        int ret = Integer.MIN_VALUE;
        for (int  i = 1; i < dp.length; i++) {
            dp[i] = Math.max(nums[i -1],dp[i - 1] + nums[i - 1]);
            ret = Math.max(ret,dp[i]);
        }
        return ret;
    }
}

🌴环形子数组的最大和

🚩题目描述

给定一个长度为 n 的环形整数数组 nums ,返回 nums 的非空 子数组 的最大可能和 。

环形数组 意味着数组的末端将会与开头相连呈环状。形式上, nums[i] 的下一个元素是 nums[(i + 1) % n] , nums[i] 的前一个元素是 nums[(i - 1 + n) % n] 。

子数组 最多只能包含固定缓冲区 nums 中的每个元素一次。形式上,对于子数组 nums[i], nums[i + 1], …, nums[j] ,不存在 i <= k1, k2 <= j 其中 k1 % n == k2 % n 。

  • 示例 1:
    输入:nums = [1,-2,3,-2]
    输出:3
    解释:从子数组 [3] 得到最大和 3
  • 示例 2:
    输入:nums = [5,-3,5]
    输出:10
    解释:从子数组 [5,5] 得到最大和 5 + 5 = 10
  • 示例 3:
    输入:nums = [3,-2,2,-3]
    输出:3
    解释:从子数组 [3] 和 [3,-2,2] 都可以得到最大和 3
class Solution {
    public int maxSubarraySumCircular(int[] nums) {
    }
}

🚩算法思路:

本题与「最大子数组和」的区别在于,考虑问题的时候不仅要分析「数组内的连续区域」,还要考虑「数组⾸尾相连」的⼀部分。结果的可能情况分为以下两种:

  1. 结果在数组的内部,包括整个数组;
  2. 结果在数组首尾相连的⼀部分上。

其中,对于第⼀种情况,我们仅需按照「最大子数组和」的求法就可以得到结果,记为 fmax 。

对于第⼆种情况,我们可以分析⼀下:

  • 如果数组⾸尾相连的⼀部分是最⼤的数组和,那么数组中间就会空出来⼀部分;
  • 因为数组的总和 sum 是不变的,那么中间连续的⼀部分的和⼀定是最小的;

因此,我们就可以得出⼀个结论,对于第⼆种情况的最⼤和,应该等于 sum - gmin ,其中gmin 表⽰数组内的「最⼩⼦数组和」。

两种情况下的最⼤值,就是我们要的结果。

但是,由于数组内有可能全部都是负数,第⼀种情况下的结果是数组内的最⼤值(是个负数),第⼆种情况下的 gmin == sum ,求的得结果就会是 0 。

若直接求两者的最⼤值,就会是 0 。但是实际的结果应该是数组内的最⼤值。对于这种情况,我们需要特殊判断⼀下。

由于「最⼤⼦数组和」的⽅法已经讲过,这⾥只提⼀下「最⼩⼦数组和」的求解过程,其实与「最⼤⼦数组和」的求法是⼀致的。⽤ f 表⽰最⼤和, g 表⽰最⼩和。

  1. 状态表示:

g[i] 表⽰:以 i 做结尾的「所有⼦数组」中和的最⼩值。

  1. 状态转移⽅程:

g[i] 的所有可能可以分为以下两种:

  1. ⼦数组的⻓度为 1 :此时 g[i] = nums[i] ;
  2. ⼦数组的⻓度⼤于 1 :此时 g[i] 应该等于 以 i - 1 做结尾的「所有⼦数组」中和的最⼩值再加上 nums[i] ,也就是 g[i - 1] + nums[i] 。

由于我们要的是最⼩⼦数组和,因此应该是两种情况下的最⼩值,因此可得转移⽅程:

  • g[i] = min(nums[i], g[i - 1] + nums[i]) 。
  1. 初始化:
    可以在最前⾯加上⼀个辅助结点,帮助我们初始化。使⽤这种技巧要注意两个点:
  • 辅助结点⾥⾯的值要保证后续填表是正确的;
  • 下标的映射关系。

在本题中,最前⾯加上⼀个格⼦,并且让 g[0] = 0 即可。

  1. 填表顺序:

根据状态转移⽅程易得,填表顺序为「从左往右」。

  1. 返回值:
  • 先找到 f 表⾥⾯的最⼤值 -> fmax ;
  • 找到 g 表⾥⾯的最⼩值 -> gmin ;
  • 统计所有元素的和 -> sum ;
  • 返回 sum == gmin ? fmax : max(fmax, sum - gmin)

🚩代码实现

public int maxSubarraySumCircular(int[] nums) {
        // 1. 创建 dp 表
        // 2. 初始化
        // 3. 填表
        // 4. 返回值
        int n = nums.length;
        int[] f = new int[n + 1];
        int[] g = new int[n + 1];
        int sum = 0;
        int fmax = Integer.MIN_VALUE;
        int gmin = Integer.MAX_VALUE;
        for(int i = 1; i <= n; i++) {
            int x = nums[i - 1];
            f[i] = Math.max(x, x + f[i - 1]);
            fmax = Math.max(fmax, f[i]);
            g[i] = Math.min(x, x + g[i - 1]);
            gmin = Math.min(gmin, g[i]);
            sum += x;
        }
        return sum == gmin ? fmax : Math.max(fmax, sum - gmin);
    }

🌲乘积最大子数组

🚩题目描述

给你一个整数数组 nums ,请你找出数组中乘积最大的非空连续

子数组(该子数组中至少包含一个数字),并返回该子数组所对应的乘积。

测试用例的答案是一个 32-位 整数。

  • 示例 1:
    输入: nums = [2,3,-2,4]
    输出: 6
    解释: 子数组 [2,3] 有最大乘积 6。
  • 示例 2:
    输入: nums = [-2,0,-1]
    输出: 0
    解释: 结果不能为 2, 因为 [-2,-1] 不是子数组。
class Solution {
    public int maxProduct(int[] nums) {
    }
}

🚩算法思路:

这道题与「最大子数组和] 非常相似,我们可以效仿着定义⼀下状态表⽰以及状态转移:

  • dp[i] 表示以 i 为结尾的所有子数组的最⼤乘积,
  • dp[i] = max(nums[i], dp[i - 1] * nums[i]) ;

由于正负号的存在,我们很容易就可以得到,这样求 dp[i] 的值是不正确的。因为 dp[i - 1] 的信息并不能让我们得到 dp[i] 的正确值。

比如数组 [-2, 5, -2] ,用上述状态转移得到的 dp数组为 [-2, 5, -2] ,最⼤乘积为 5 。但是实际上的最⼤乘积应该是所有数相乘,结果为 20 。

究其原因,就是因为我们在求 dp[2] 的时候,因为 nums[2] 是⼀个负数,因此我们需要的是「 i - 1 位置结尾的最⼩的乘积 (-10) 」,这样⼀个负数乘以「最⼩值」,才会得到真实的最⼤值。

因此,我们不仅需要⼀个「乘积最⼤值的 dp 表」,还需要⼀个「乘积最⼩值的 dp 表」。

  1. 状态表⽰:

f[i] 表⽰:以 i 结尾的所有⼦数组的最⼤乘积,

g[i] 表⽰:以 i 结尾的所有⼦数组的最⼩乘积。

  1. 状态转移⽅程:

遍历每⼀个位置的时候,我们要同步更新两个 dp 数组的值。

对于 f[i] ,也就是「以 i 为结尾的所有⼦数组的最⼤乘积」,对于所有⼦数组,可以分为下⾯三种形式:

  • ⼦数组的⻓度为 1 ,也就是 nums[i] ;
  • ⼦数组的⻓度⼤于 1 ,但 nums[i] > 0 ,此时需要的是 i - 1 为结尾的所有⼦数组的最⼤乘积 f[i - 1] ,再乘上 nums[i] ,也就是 nums[i] * f[i - 1] ;
  • ⼦数组的⻓度⼤于 1 ,但 nums[i] < 0 ,此时需要的是 i - 1 为结尾的所有⼦数组的最⼩乘积 g[i - 1] ,再乘上 nums[i] ,也就是 nums[i] * g[i - 1] ;(如果 nums[i] = 0 ,所有⼦数组的乘积均为 0 ,三种情况其实都包含了)

综上所述, f[i] = max(nums[i], max(nums[i] * f[i - 1], nums[i] * g[i -

1]) )。

对于 g[i] ,也就是「以 i 为结尾的所有⼦数组的最⼩乘积」,对于所有⼦数组,可以分为下⾯三种形式:

  • 子数组的⻓度为 1 ,也就是 nums[i] ;
  • 子数组的⻓度⼤于 1 ,但 nums[i] > 0 ,此时需要的是 i - 1 为结尾的所有子数组的最⼩乘积 g[i - 1] ,再乘上 nums[i] ,也就是 nums[i] * g[i - 1] ;
  • 子数组的长度度⼤于 1 ,但 nums[i] < 0 ,此时需要的是 i - 1 为结尾的所有子数组的最⼤乘积 f[i - 1] ,再乘上 nums[i] ,也就是 nums[i] * f[i - 1] ;

综上所述, g[i] = min(nums[i], min(nums[i] * f[i - 1], nums[i] * g[i - 1])) 。

(如果 nums[i] = 0 ,所有⼦数组的乘积均为 0 ,三种情况其实都包含了)

  1. 初始化:

可以在最前面加上⼀个辅助结点,帮助我们初始化。使⽤这种技巧要注意两个点:

  • 辅助结点里面的值要保证后续填表是正确的;
  • 下标的映射关系。

在本题中,最前⾯加上⼀个格⼦,并且让 f[0] = g[0] = 1 即可。

  1. 填表顺序:

根据状态转移⽅程易得,填表顺序为「从左往右,两个表⼀起填」。

  1. 返回值:

返回 f 表中的最⼤值

🚩代码实现

class Solution {
    public int maxProduct(int[] nums) {
        // 1. 创建 dp 表
        // 2. 初始化
        // 3. 填表
        // 4. 返回值
        int n = nums.length;
        int[] f = new int[n + 1];
        int[] g = new int[n + 1];
        f[0] = 1;
        g[0] = 1;
        int ret = Integer.MIN_VALUE;
        for(int i = 1; i <= n; i++) {
            int x = nums[i - 1];
            int y = f[i - 1] * nums[i - 1];
            int z = g[i - 1] * nums[i - 1];
            f[i] = Math.max(x, Math.max(y, z));
            g[i] = Math.min(x, Math.min(y, z));
            ret = Math.max(ret, f[i]);
        }
        return ret;
    }
}

⭕总结

关于《【算法优选】 动态规划之子数组、子串系列——壹》就讲解到这儿,感谢大家的支持,欢迎各位留言交流以及批评指正,如果文章对您有帮助或者觉得作者写的还不错可以点一下关注,点赞,收藏支持一下!

相关文章
|
3月前
|
算法 测试技术 C++
【动态规划算法】蓝桥杯填充问题(C/C++)
【动态规划算法】蓝桥杯填充问题(C/C++)
|
2月前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
64 2
|
3月前
|
算法
动态规划算法学习三:0-1背包问题
这篇文章是关于0-1背包问题的动态规划算法详解,包括问题描述、解决步骤、最优子结构性质、状态表示和递推方程、算法设计与分析、计算最优值、算法实现以及对算法缺点的思考。
115 2
动态规划算法学习三:0-1背包问题
|
3月前
|
算法
动态规划算法学习四:最大上升子序列问题(LIS:Longest Increasing Subsequence)
这篇文章介绍了动态规划算法中解决最大上升子序列问题(LIS)的方法,包括问题的描述、动态规划的步骤、状态表示、递推方程、计算最优值以及优化方法,如非动态规划的二分法。
84 0
动态规划算法学习四:最大上升子序列问题(LIS:Longest Increasing Subsequence)
|
3月前
|
算法
动态规划算法学习二:最长公共子序列
这篇文章介绍了如何使用动态规划算法解决最长公共子序列(LCS)问题,包括问题描述、最优子结构性质、状态表示、状态递归方程、计算最优值的方法,以及具体的代码实现。
194 0
动态规划算法学习二:最长公共子序列
|
3月前
|
存储 算法
动态规划算法学习一:DP的重要知识点、矩阵连乘算法
这篇文章是关于动态规划算法中矩阵连乘问题的详解,包括问题描述、最优子结构、重叠子问题、递归方法、备忘录方法和动态规划算法设计的步骤。
192 0
|
3月前
|
算法 C++
【算法解题思想】动态规划+深度优先搜索(C/C++)
【算法解题思想】动态规划+深度优先搜索(C/C++)
|
10天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
143 80
|
3天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
6天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。

热门文章

最新文章