【YOLOv8改进】CPCA(Channel prior convolutional attention)中的通道注意力,增强特征表征能力 (论文笔记+引入代码)

简介: 该专栏聚焦YOLO目标检测的创新改进与实战,介绍了一种针对医学图像分割的通道优先卷积注意力(CPCA)方法。CPCA结合通道和空间注意力,通过多尺度深度卷积提升性能。提出的CPCANet网络在有限计算资源下,于多个数据集上展现优越分割效果。代码已开源。了解更多详情,请访问提供的专栏链接。

YOLO目标检测创新改进与实战案例专栏

专栏目录: YOLO有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

专栏链接: YOLO基础解析+创新改进+实战案例

摘要

医学图像通常展示出低对比度和显著的器官形状变化等特征。现有注意力机制通常不足以适应性地提升医学成像的分割性能。本文提出了一种有效的通道优先卷积注意力(CPCA)方法,支持在通道和空间维度上动态分配注意力权重。通过采用多尺度深度卷积模块,有效地提取空间关系同时保留通道优先。CPCA具有关注信息丰富通道和重要区域的能力。基于CPCA,我们提出了一个用于医学图像分割的网络,称为CPCANet。CPCANet在两个公开可用的数据集上进行了验证。与最先进的算法相比,CPCANet在需求较少的计算资源下实现了改进的分割性能。我们的代码已公开可用于https://github.com/Cuthbert-Huang/CPCANet。

基本原理

通道先验卷积注意力(Channel Prior Convolutional Attention,CPCA)是一种用于增强特征表示和动态分配注意力权重的注意力机制。CPCA结合了通道注意力和空间注意力,通过多尺度深度可分离卷积模块有效地提取空间关系并保留通道先验。下面是CPCA的详细技术原理:

  1. 通道注意力(Channel Attention)
    • 通道注意力模块用于动态学习每个通道的重要性,以提高特征的表征能力。通道注意力通过以下步骤实现:
      • 对输入特征进行全局平均池化和全局最大池化,得到两个不同的特征表示。
      • 将这两个特征表示分别通过两个卷积层和激活函数处理,以提取通道之间的关系。
      • 将处理后的特征通过Sigmoid函数生成通道注意力权重,用于动态调整每个通道的重要性。
  2. 空间注意力(Spatial Attention)
    • 空间注意力模块用于捕捉特征图中不同位置之间的关系,以提高空间信息的表征。空间注意力通过多尺度深度可分离卷积模块实现,可以有效地提取空间关系。
    • 多尺度深度可分离卷积模块使用不同大小的卷积核来捕获多尺度信息,从而更好地理解特征图的空间结构。
  3. CPCA的整体原理
    • CPCA结合了通道注意力和空间注意力,通过多尺度深度可分离卷积模块实现动态分配注意力权重,并保留通道先验。这种结合可以帮助网络更好地捕捉重要的特征,并提高特征的表征能力。

yolov8 引入

class CPCAChannelAttention(nn.Module):
    def __init__(self, input_channels, internal_neurons):
        super(CPCAChannelAttention, self).__init__()
        # 定义第一个1x1卷积层,将输入通道数减少到内部神经元数
        self.fc1 = nn.Conv2d(in_channels=input_channels, out_channels=internal_neurons, kernel_size=1, stride=1, bias=True)
        # 定义第二个1x1卷积层,将内部神经元数恢复到输入通道数
        self.fc2 = nn.Conv2d(in_channels=internal_neurons, out_channels=input_channels, kernel_size=1, stride=1, bias=True)
        self.input_channels = input_channels  # 保存输入的通道数

    def forward(self, inputs):
        # 自适应平均池化,将输入特征图缩小到1x1
        x1 = F.adaptive_avg_pool2d(inputs, output_size=(1, 1))
        # 通过第一个1x1卷积层
        x1 = self.fc1(x1)
        # 经过ReLU激活函数
        x1 = F.relu(x1, inplace=True)
        # 通过第二个1x1卷积层
        x1 = self.fc2(x1)
        # 应用Sigmoid激活函数
        x1 = torch.sigmoid(x1)

        # 自适应最大池化,将输入特征图缩小到1x1
        x2 = F.adaptive_max_pool2d(inputs, output_size=(1, 1))
        # 通过第一个1x1卷积层
        x2 = self.fc1(x2)
        # 经过ReLU激活函数
        x2 = F.relu(x2, inplace=True)
        # 通过第二个1x1卷积层
        x2 = self.fc2(x2)
        # 应用Sigmoid激活函数
        x2 = torch.sigmoid(x2)

        # 将自适应平均池化和自适应最大池化的结果相加
        x = x1 + x2
        # 调整形状,使其与输入特征图的通道数匹配
        x = x.view(-1, self.input_channels, 1, 1)
        return x

task与yaml配置

详见:https://blog.csdn.net/shangyanaf/article/details/139186904

相关文章
|
6月前
|
机器学习/深度学习 Serverless 计算机视觉
【YOLOv8改进 - 注意力机制】Sea_Attention: Squeeze-enhanced Axial Attention,结合全局语义提取和局部细节增强
【YOLOv8改进 - 注意力机制】Sea_Attention: Squeeze-enhanced Axial Attention,结合全局语义提取和局部细节增强
|
6月前
|
机器学习/深度学习 算法 测试技术
【YOLOv8改进 - 注意力机制】Focused Linear Attention :全新的聚焦线性注意力模块
YOLOv8专栏探讨了该目标检测算法的创新改进,包括使用聚焦线性注意力模块,解决了Transformer在视觉任务中的效率和表达力问题。该模块增强自注意力,提高焦点能力和特征多样性,保持线性复杂度。文章提供了实证证据证明其在多个基准上的性能提升,并在GitHub上发布了代码。论文和更多实战案例链接见文中。
|
6月前
|
机器学习/深度学习 编解码 计算机视觉
【YOLOv10改进-注意力机制】HAT(Hybrid Attention Transformer,)混合注意力机制
YOLOv10专栏介绍了一种名为HAT的新方法,旨在改善Transformer在图像超分辨率中的表现。HAT结合通道和窗口注意力,激活更多像素并增强跨窗口信息交互。亮点包括:1) 更多像素激活,2) 有效跨窗口信息聚合,3) 任务特定的预训练策略。HAT模型包含浅层特征提取、深层特征提取和图像重建阶段。提供的代码片段展示了HAT类的定义,参数包括不同层的深度、注意力头数量、窗口大小等。欲了解更多详情和配置,请参考给定链接。
|
7月前
|
机器学习/深度学习 编解码 PyTorch
【YOLOv8改进】HAT(Hybrid Attention Transformer,)混合注意力机制 (论文笔记+引入代码)
YOLO目标检测专栏介绍了YOLO系列的改进方法和实战应用,包括卷积、主干网络、注意力机制和检测头的创新。提出的Hybrid Attention Transformer (HAT)结合通道注意力和窗口自注意力,激活更多像素以提升图像超分辨率效果。通过交叉窗口信息聚合和同任务预训练策略,HAT优化了Transformer在低级视觉任务中的性能。实验显示,HAT在图像超分辨率任务上显著优于现有方法。模型结构包含浅层和深层特征提取以及图像重建阶段。此外,提供了HAT模型的PyTorch实现代码。更多详细配置和任务说明可参考相关链接。
|
7月前
|
机器学习/深度学习 计算机视觉
【YOLOv8改进】EMA(Efficient Multi-Scale Attention):基于跨空间学习的高效多尺度注意力 (论文笔记+引入代码)
YOLO目标检测专栏介绍了创新的多尺度注意力模块EMA,它强化通道和空间信息处理,同时降低计算负担。EMA模块通过通道重塑和并行子网络优化特征表示,增强长距离依赖建模,在保持效率的同时提升模型性能。适用于图像分类和目标检测任务,尤其在YOLOv8中表现出色。代码实现和详细配置可在文中链接找到。
|
7月前
|
机器学习/深度学习 编解码 计算机视觉
【YOLOv8改进】D-LKA Attention:可变形大核注意力 (论文笔记+引入代码)
YOLO目标检测专栏探讨了Transformer在医学图像分割的进展,但计算需求限制了模型的深度和分辨率。为此,提出了可变形大核注意力(D-LKA Attention),它使用大卷积核捕捉上下文信息,通过可变形卷积适应数据模式变化。D-LKA Net结合2D和3D版本的D-LKA Attention,提升了医学分割性能。YOLOv8引入了可变形卷积层以增强目标检测的准确性。相关代码和任务配置可在作者博客找到。
|
7月前
|
机器学习/深度学习 测试技术 计算机视觉
【YOLOv8改进】DAT(Deformable Attention):可变性注意力 (论文笔记+引入代码)
YOLO目标检测创新改进与实战案例专栏探讨了YOLO的有效改进,包括卷积、主干、注意力和检测头等机制的创新,以及目标检测分割项目的实践。专栏介绍了Deformable Attention Transformer,它解决了Transformer全局感受野带来的问题,通过数据依赖的位置选择、灵活的偏移学习和全局键共享,聚焦相关区域并捕获更多特征。模型在多个基准测试中表现优秀,代码可在GitHub获取。此外,文章还展示了如何在YOLOv8中应用Deformable Attention。
|
7月前
|
机器学习/深度学习 编解码 算法
【YOLOv8改进】MLCA(Mixed local channel attention):混合局部通道注意力(论文笔记+引入代码)
**摘要:** 本文提出轻量级MLCA模块,结合通道、空间、局部及全局信息,提升网络表达效率。在MobileNet-Attention-YOLO(MAY)中应用MLCA,于PASCAL VOC和SMID数据集上对比SE和CA,mAP提升1.0%和1.5%。论文及代码链接提供。MLCA通过局部池化和反池化处理,增强通道交互和空间信息,实现更精确的目标检测。详情见YOLO改进与实战专栏。
|
8月前
|
编解码 计算机视觉 网络架构
【YOLOv8改进】BiFPN:加权双向特征金字塔网络 (论文笔记+引入代码)
该专栏深入研究了YOLO目标检测的神经网络架构优化,提出了加权双向特征金字塔网络(BiFPN)和复合缩放方法,以提升模型效率。BiFPN通过双向跨尺度连接和加权融合增强信息传递,同时具有自适应的网络拓扑结构。结合EfficientNet,构建了EfficientDet系列检测器,在效率和准确性上超越先前技术。此外,介绍了YOLOv8如何引入MPDIoU并应用BiFPN进行可学习权重的特征融合。更多详情可参考提供的专栏链接。
|
8月前
|
机器学习/深度学习 编解码 数据可视化
全新ViT Backbone | 混合卷积与Attention设计的SMT更快、更小也更强
全新ViT Backbone | 混合卷积与Attention设计的SMT更快、更小也更强
141 1