k8s 二进制安装 优化架构之 部署负载均衡,加入master02

本文涉及的产品
容器服务 Serverless 版 ACK Serverless,952元额度 多规格
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
简介: k8s 二进制安装 优化架构之 部署负载均衡,加入master02

一    实验环境

k8s集群master01:192.168.217.66    kube-apiserver kube-controller-manager kube-scheduler etcd

k8s集群master02:192.168.217.77

k8s集群node01:192.168.217.88    kubelet kube-proxy docker

k8s集群node02:192.168.217.99

etcd集群节点1:192.168.217.66    etcd

etcd集群节点2:192.168.217.88    etcd

etcd集群节点3:192.168.217.99    etcd

负载均衡nginx+keepalive01(master):192.168.217.22

负载均衡nginx+keepalive02(backup):192.168.217.44

二    部署 CoreDNS

CoreDNS:可以为集群中的 service 资源创建一个域名 与 IP 的对应关系解析

node加载coredns.tar 镜像    

master 执行ymal 文件

1,所有node加载coredns.tar 镜像  

拖入压缩包

docker load -i coredns.tar 载入镜像

2,在 master01 节点部署 CoreDNS

上传 coredns.yaml 文件到 /opt/k8s 目录中,部署 CoreDNS

查看 kube-system  的命名空间

3, DNS 解析测试

 kubectl create clusterrolebinding cluster-system-anonymous --clusterrole=cluster-admin --user=system:anonymous
 
 
############   
返回结果
clusterrolebinding.rbac.authorization.k8s.io/cluster-system-anonymous created

4, 报错分析

如果出现以下报错

需要添加 rbac的权限  直接使用kubectl绑定  clusteradmin 管理员集群角色  授权操作权限

在master01:

 kubectl create clusterrolebinding cluster-system-anonymous --clusterrole=cluster-admin --user=system:anonymous
 
 
############   
返回结果
clusterrolebinding.rbac.authorization.k8s.io/cluster-system-anonymous created

kubectl create clusterrolebinding 命令用于在 Kubernetes 集群中创建一个新的 ClusterRoleBinding 资源。ClusterRoleBinding 将ClusterRole(一组权限)绑定到用户、组或其他实体,决定了这些实体在集群范围内能够执行的操作。下面是给定命令的详细解释:

  • kubectl create clusterrolebinding: 指令部分,表示要创建一个新的 ClusterRoleBinding 对象。
  • cluster-system-anonymous: 这是新创建的 ClusterRoleBinding 的名称。你可以自定义此名称,以便于管理和识别该ClusterRoleBinding的目的或作用。
  • --clusterrole=cluster-admin: 这个选项指定了要绑定的ClusterRole。在这个例子中,使用的是 cluster-admin,这是Kubernetes内置的ClusterRole,拥有对整个集群的完全管理权限。这意味着通过此ClusterRoleBinding关联的用户或组将拥有所有可能的权限。
  • --user=system:anonymous: 这个选项指定了ClusterRoleBinding将应用到的用户。在这个命令中,用户是 system:anonymous。在Kubernetes中,system:anonymous 是一个特殊用户,代表未认证的请求者,即任何未提供有效认证信息的访问尝试都会被视为这个用户。通过这种方式,此命令实际上是在赋予所有未经身份验证的访问者集群管理员权限,这是一个非常危险的配置,通常不推荐在生产环境中使用,因为这会极大地降低集群的安全性。

总结起来,这条命令创建了一个名为 cluster-system-anonymous 的ClusterRoleBinding,将集群管理员(cluster-admin)权限赋予了匿名用户(system:anonymous)。这是一种极端情况下的配置,实际操作中应谨慎使用此类权限分配,以免造成安全风险。

5,重新  DNS 解析测试

三       master02 节点部署

在企业里 master最少3台 有个leader

大体思路 是传 master需要的

etcd    kubernetes  目录   以及/root/.kube(kubectl 的配置文件以及缓存)     以及所有服务的system 单元文件

最后一个一个启动

1,从master01 传etcd 目录到 master02 节点

2,从master01 传  kubernetes  目录到 master02 节点

3,从master01传/root/.kube到 master02 节点

  • cache: 这个目录通常用于存放由kubectl命令行工具缓存的各种数据,比如API资源的本地副本或者上次查询的结果,以便提高后续命令的执行速度。这些信息帮助减少不必要的API服务器查询,提升交互效率。
  • config: 这是一个非常重要的文件,全名为config.yamlconfig(取决于操作系统显示设置),它包含了Kubernetes配置信息,尤其是与集群连接相关的设置。这个文件定义了如何连接到Kubernetes API服务器(apiserver)、认证凭据(如token或client证书)、上下文(clusters)、用户(users)以及默认的命名空间(namespace)等。当你使用kubectl命令行工具时,它会默认查找这个文件来确定如何与Kubernetes集群进行通信。

简而言之,.kube/cache是kubectl用于缓存数据以提高效率的目录,而.kube/config则是一个关键的配置文件,用于存储与Kubernetes集群交互所需的认证和配置细节

4, 从master01 传服务管理文件到 master02 节点

scp /usr/lib/systemd/system/{kube-apiserver,kube-controller-manager,kube-scheduler}.service root@master02:/usr/lib/systemd/system/

5,修改配置文件kube-apiserver中的IP

去master02

vim /opt/kubernetes/cfg/kube-apiserver

将第5行   7行   改成自己的ip

 

6, master02 节点上启动各服务并设置开机自启

systemctl start kube-apiserver.service
systemctl enable kube-apiserver.service
systemctl start kube-controller-manager.service
systemctl enable kube-controller-manager.service
systemctl start kube-scheduler.service
systemctl enable kube-scheduler.service

7, master02  将 可执行文件都做软连接

8,验证 master02 是否安装成功

查看node节点状态

-o=wide:输出额外信息;对于Pod,将输出Pod所在的Node名

//此时在master02节点查到的node节点状态仅是从etcd查询到的信息,而此时node节点实际上并未与master02节点建立通信连接,因此需要使用一个VIP把node节点与master节点都关联起来

四     负载均衡部署

1,架构图

2,k8s 集群做 nginx +keepalive 负载均衡高可用 的必要性

负载均衡器 :

分摊master流量

且 node回包的时候  也是经过负载均衡器

所有master 不需要指向node

3, 部署两台nginx 负载均衡服务器

3.1,配置nginx的官方在线yum源,配置本地nginx的yum源

两个nginx服务器

cat > /etc/yum.repos.d/nginx.repo << 'EOF'
[nginx]
name=nginx repo
baseurl=http://nginx.org/packages/centos/7/$basearch/
gpgcheck=0
EOF
3.2, 安装nginx

两个nginx服务器

3.3,修改nginx配置文件,配置四层反向代理负载均衡,指定k8s群集2台master的节点ip和6443端口

两个nginx服务器

vim /etc/nginx/nginx.conf

stream {
    log_format  main  '$remote_addr $upstream_addr - [$time_local] $status $upstream_bytes_sent';
    
  access_log  /var/log/nginx/k8s-access.log  main;
 
    upstream k8s-apiserver {
        server 192.168.217.66:6443;
        server 192.168.217.77:6443;
    }
    server {
        listen 6443;
        proxy_pass k8s-apiserver;
    }
}

解释:

这段配置是Nginx的一个配置片段,用于设置一个反向代理和负载均衡,特别是针对Kubernetes(k8s)API服务器的流量管理。下面逐行解释各部分:

  • stream: 这里其实有一个小误解,正确的配置应该是放在http块中而非stream,因为log_format, access_log, upstream, 和 server 配置都是HTTP相关的,而不是TCP/UDP流处理。stream模块用于处理四层协议(TCP/UDP)的负载均衡,而这里明显是在配置HTTP七层协议的负载均衡。因此,下面的解释基于它是HTTP配置的假设。
  • log_format main ...: 定义了名为main的日志格式,用于记录客户端IP地址(remote_addr),上游服务器地址(remoteaddr),上游服务器地址(upstream_addr),请求时间(time_local),HTTP响应状态码(timelocal),HTTP响应状态码(status),以及发送给客户端的字节数($upstream_bytes_sent)。
  • access_log /var/log/nginx/k8s-access.log main;: 指定了访问日志的存储位置/var/log/nginx/k8s-access.log并且使用前面定义的main日志格式来记录日志
  • upstream k8s-apiserver {...}: 定义了一个名为k8s-apiserver的上游服务器组(可以理解为真实服务器),包含两个Kubernetes API服务器的地址:192.168.10.80:6443 和 192.168.10.20:6443。Nginx会根据负载均衡策略(默认是轮询)将请求分发到这两个地址之一。
  • server {...}: 定义了一个监听在6443端口上的Nginx服务器块。
  • listen 6443;: 指定该Nginx服务器监听在6443端口,这通常是Kubernetes API服务器的默认端口。
  • proxy_pass k8s-apiserver;: 设置代理传递目标为之前定义的k8s-apiserver上游服务器组,这意味着所有到达Nginx此端口的请求会被转发到这两个Kubernetes API服务器之一

总结来说,这段配置的作用是设置了一个Nginx作为Kubernetes API服务器的反向代理和负载均衡器,它监听在6443端口,接收对Kubernetes API的请求,并将这些请求透明地分发到两个Kubernetes API服务器实例上,同时记录相关访问日志。这样不仅提升了Kubernetes API服务的可用性和响应能力,还便于日志审计和故障排查。

3.4  检查配置文件语法

两个nginx服务器

3.5 启动nginx服务,查看已监听6443端口

两个nginx服务器

4,部署keepalived服务 解决nginx 单点故障

4.1  安装keepalived

两个nginx服务器

4.2 修改keepalived配置文件

ng01

vim /etc/keepalived/keepalived.conf

注意此处vip 地址  需要与master01   /opt/k8s/k8s-cert/k8s-cert.sh 中的vip 一致

vim /etc/keepalived/keepalived.conf
! Configuration File for keepalived
 
global_defs {
   # 接收邮件地址
   notification_email {
     acassen@firewall.loc
     failover@firewall.loc
     sysadmin@firewall.loc
   }
   # 邮件发送地址
   notification_email_from Alexandre.Cassen@firewall.loc
   smtp_server 127.0.0.1
   smtp_connect_timeout 30
   router_id NGINX_MASTER       #ng01节点的为 NGINX_MASTER,ng02节点的为 NGINX_BACKUP
}
 
#添加一个周期性执行的脚本
vrrp_script check_nginx {
    script "/etc/nginx/check_nginx.sh"  #指定检查nginx存活的脚本路径
}
 
vrrp_instance VI_1 {
    state MASTER                        #ng01节点的为 MASTER,ng02节点的为 BACKUP
    interface ens33                     #指定网卡名称 ens33
    virtual_router_id 51        #指定vrid,两个节点要一致
    priority 100                        #ng01节点的为 100,ng02节点的为 90
    advert_int 1
    authentication {
        auth_type PASS
        auth_pass 1111
    }
    virtual_ipaddress {
        192.168.217.100/24      #指定 VIP
    }
    track_script {
        check_nginx                     #指定vrrp_script配置的脚本
    }
}

ng02

 

vim /etc/keepalived/keepalived.conf
! Configuration File for keepalived
 
global_defs {
   # 接收邮件地址
   notification_email {
     acassen@firewall.loc
     failover@firewall.loc
     sysadmin@firewall.loc
   }
   # 邮件发送地址
   notification_email_from Alexandre.Cassen@firewall.loc
   smtp_server 127.0.0.1
   smtp_connect_timeout 30
   router_id NGINX_BACKUP       #ng01节点的为 NGINX_MASTER,ng02节点的为 NGINX_BACKUP
}
 
#添加一个周期性执行的脚本
vrrp_script check_nginx {
    script "/etc/nginx/check_nginx.sh"  #指定检查nginx存活的脚本路径
}
 
vrrp_instance VI_1 {
    state BACKUP                        #ng01节点的为 MASTER,ng02节点的为 BACKUP
    interface ens33                     #指定网卡名称 ens33
    virtual_router_id 51        #指定vrid,两个节点要一致
    priority 90                 #ng01节点的为 100,ng02节点的为 90
    advert_int 1
    authentication {
        auth_type PASS
        auth_pass 1111
    }
    virtual_ipaddress {
        192.168.217.100/24      #指定 VIP
    }
    track_script {
        check_nginx                     #指定vrrp_script配置的脚本
    }
}
4.3 创建nginx状态检查脚本

两个nginx服务器

vim /etc/nginx/check_nginx.sh

#!/bin/bash
#egrep -cv "grep|$$" 用于过滤掉包含grep 或者 $$ 表示的当前Shell进程ID,即脚本运行的当前进程ID号
count=$(ps -ef | grep nginx | egrep -cv "grep|$$")
 
if [ "$count" -eq 0 ];then
    systemctl stop keepalived
fi

加执行 权限

4.4 启动keepalived服务

两个nginx服务器

(一定要先启动了nginx服务,再启动keepalived服务)

查看VIP是否生成 ng01

5,  使用一个VIP把node节点与master节点都关联起来

所有node

5.1 修改node节点上的bootstrap.kubeconfig  配置文件为VIP

vim bootstrap.kubeconfig

5.2 修改node节点上的kubelet.kubeconfig  配置文件为VIP

vim kubelet.kubeconfig

5.3  修改node节点上的kube-proxy.kubeconfig配置文件为VIP

vim kube-proxy.kubeconfig

5.4  重启kubelet和kube-proxy服务

6,  查看nginx 和 node 、 master 节点的连接状态

ng01

ng02

7,测试创建pod

master01 节点

7.1 测试创建pod

创建nginx pod

7.2 查看Pod的状态信息

//READY为1/1,表示这个Pod中有1个容器

 

7.3 curl命令访问

在对应网段的node节点上操作,可以直接使用浏览器或者curl命令访问

node01

7.4 查看nginx日志

master01节点

网关访问

 

7.5  查看service

master01节点

五    部署 Dashboard

1,Dashboard 介绍

仪表板是基于Web的Kubernetes用户界面。您可以使用仪表板将容器化应用程序部署到Kubernetes集群,对容器化应用程序进行故障排除,并管理集群本身及其伴随资源。您可以使用仪表板来概述群集上运行的应用程序,以及创建或修改单个Kubernetes资源(例如deployment,job,daemonset等)。例如,您可以使用部署向导扩展部署,启动滚动更新,重新启动Pod或部署新应用程序。仪表板还提供有关群集中Kubernetes资源状态以及可能发生的任何错误的信息。

2, 准备Dashboard 和 metrics-scraper.tar

node01  node02

准备压缩包

加载Dashboard  镜像(可视化工具)

这是监控数据的

3,master01 节点上传 recommended.yaml 文件到 /opt/k8s 目录中

master01

#默认Dashboard只能集群内部访问,修改Service为NodePort类型,暴露到外部:
kind: Service
apiVersion: v1
metadata:
  labels:
    k8s-app: kubernetes-dashboard
  name: kubernetes-dashboard
  namespace: kubernetes-dashboard
spec:
  ports:
    - port: 443
      targetPort: 8443
      nodePort: 30001     #添加
  type: NodePort          #添加
  selector:
    k8s-app: kubernetes-dashboard

4, 执行 ymal 文件

master01

5,创建service account并绑定默认cluster-admin管理员集群角色

创建service account

kubectl create serviceaccount dashboard-admin -n kube-system

kubectl create serviceaccount dashboard-admin -n kube-system 是一个 Kubernetes 命令,用于在 Kubernetes 集群中创建一个新的服务账户(service account)。下面是对这个命令各部分的详细解释:

  • kubectl: 这是 Kubernetes 的命令行工具,用于与 Kubernetes 集群进行交互,执行各种管理任务,如部署应用、检查集群状态等。
  • create: 这是一个 kubectl 动作,表示你要创建一个新的资源对象,如 Pod、Service、Deployment 或者在这个情况下,是 ServiceAccount。
  • serviceaccount: 这个关键词告诉 kubectl 你要创建的资源类型是 ServiceAccount。ServiceAccount 是 Kubernetes 中的一个特殊类型的对象,它用来为Pods提供身份和凭证,以便Pod内的进程能够与Kubernetes API进行安全通信。
  • dashboard-admin: 这是你要创建的服务账户的名称。在这个场景中,"dashboard-admin" 暗示这个服务账户可能被设计用来给 Kubernetes Dashboard 或其他需要访问API权限的组件提供管理员级别的访问权限,但具体权限由关联的Role或ClusterRole决定。
  • -n kube-system: -n--namespace 是一个选项,用于指定资源将被创建在哪个命名空间(namespace)中。在这里,命名空间是 kube-systemkube-system 是 Kubernetes 集群中的一个特殊命名空间,通常用于存放集群的核心组件和服务,如DNS、网络插件、监控系统等。选择 kube-system 表示这个服务账户将专用于该命名空间内的资源和服务。

综上所述,这个命令的作用是在 Kubernetes 集群的 kube-system 命名空间中创建一个名为 dashboard-admin 的服务账户,它可能被设计用于为Kubernetes Dashboard或类似应用提供必要的API访问权限。但请注意,实际的权限配置需要通过附加的Role或ClusterRole以及RoleBinding或ClusterRoleBinding来实现。

管理员账号 并赋权

kubectl create clusterrolebinding dashboard-admin --clusterrole=cluster-admin --serviceaccount=kube-system:dashboard-admin

kubectl create clusterrolebinding dashboard-admin --clusterrole=cluster-admin --serviceaccount=kube-system:dashboard-admin 是 Kubernetes 中的一个命令,用于创建一个集群角色绑定(ClusterRoleBinding)。这个命令的目的是赋予之前创建的服务账户特定的权限。下面是各部分的详细解释:

  • kubectl create clusterrolebinding: 该命令用于创建一个新的集群角色绑定。ClusterRoleBinding 是 Kubernetes 中的一种授权机制,它将 ClusterRole(定义了一组权限)绑定到用户、组或服务账户上,并在整个集群范围内生效。
  • dashboard-admin: 这是新创建的集群角色绑定的名称。它作为一个标识符,方便后续管理和理解这个绑定的用途,这里暗示它与之前创建的 dashboard-admin 服务账户相关联,用于给该服务账户分配权限。
  • --clusterrole=cluster-admin: 这个选项指定了要绑定的 ClusterRole 名称。cluster-admin 是 Kubernetes 内置的一个超级管理员角色,拥有对整个集群的完全访问权限。通过此选项,你实际上是将 cluster-admin 这一最广泛的权限集赋予了即将绑定的对象。
  • --serviceaccount=kube-system:dashboard-admin: 这个选项指定了要授予上述ClusterRole的服务账户及其所在的命名空间。格式为 <namespace>:<serviceaccount-name>。在这个例子中,服务账户名为 dashboard-admin,位于 kube-system 命名空间。这意味着 kube-system 命名空间下的 dashboard-admin 服务账户将获得 cluster-admin 角色所包含的所有权限。

综上所述,这个命令的作用是创建一个集群角色绑定,它将 cluster-admin 这个拥有集群管理员权限的角色绑定给了 kube-system 命名空间下的 dashboard-admin 服务账户,从而使该服务账户在 Kubernetes 集群中具有了非常广泛的管理权限。这通常用于需要高度访问权限的组件,比如 Kubernetes Dashboard 的后端服务,但需要注意的是,这样的设置应谨慎使用,以避免潜在的安全风险。

6, 查看token 令牌

这个就是Dashboard 令牌

查看token 令牌 复制

kubectl describe secrets -n kube-system $(kubectl -n kube-system get secret | awk '/dashboard-admin/{print $1}')

这条命令是用来查询 Kubernetes 集群中与 dashboard-admin 服务账户相关的秘密(secrets)详细信息的。命令分为两部分,我们逐一解析:

  1. 获取 Secret 名称:
  • kubectl -n kube-system get secret: 这部分命令用于列出 kube-system 命名空间中的所有秘密。
  • | awk '/dashboard-admin/{print $1}': 这里使用管道 (|) 将前一个命令的输出作为 awk 命令的输入。awk 是一个强大的文本分析工具,这里使用的规则是,如果输出行中包含 "dashboard-admin"(这通常意味着与 dashboard-admin 服务账户相关的秘密),则打印该行的第一列(即Secret的名称)。
  1. 描述 Secret 信息:
  • kubectl describe secrets -n kube-system $(...): 这部分利用上一步得到的 Secret 名称(通过命令替换 $() 实现),在 kube-system 命名空间中执行 describe 命令来展示这些秘密的详细信息。describe 命令提供了关于资源的更详尽视图,包括其元数据、标签、选择器等属性,对于秘密来说,还会展示其类型、数据等敏感内容的加密表示。

总结来说,整个命令的作用是查找 kube-system 命名空间中与 dashboard-admin 服务账户相关的所有秘密,并详细描述这些秘密的信息。这对于调试、审计或理解服务账户认证和授权设置特别有用。

7, 浏览器登录Dashboard

谷歌好像不太行

使用输出的token登录Dashboard

https://NodeIP:30001

展示:

8,在Dashboard  创建6台pod

在master01  可查看到刚刚创建的pod

六   总结

多master集群架构的部署过程

首先 部署master02等其他master节点  master01配置文件拷贝(私钥、服务、执行文件)到master02

搭建nginx/Haproxy + keepalived 高可用负载均衡器对master节点

修改 node节点上kubelet kube-proxy的 kubeconfig配置文件对接VIP

kubectl 的配置文件也要对接VIP或者当前的节点

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
18天前
|
消息中间件 缓存 监控
优化微服务架构中的数据库访问:策略与最佳实践
在微服务架构中,数据库访问的效率直接影响到系统的性能和可扩展性。本文探讨了优化微服务架构中数据库访问的策略与最佳实践,包括数据分片、缓存策略、异步处理和服务间通信优化。通过具体的技术方案和实例分析,提供了一系列实用的建议,以帮助开发团队提升微服务系统的响应速度和稳定性。
|
1天前
|
存储 算法 Linux
探索现代操作系统的架构与优化
本文深入探讨了现代操作系统的核心架构及其性能优化策略。通过对主流操作系统架构的分析,揭示其在多任务处理、内存管理和文件系统等方面的特点。同时,针对当前技术趋势,提出一系列优化措施,旨在提升系统的运行效率和用户体验。通过实例分析,展示如何在实际场景中应用这些优化技术,确保系统在高负载下的稳定运行。
|
6天前
|
缓存 算法 安全
探索现代操作系统的架构与优化
本文旨在深入探讨现代操作系统的核心架构,并详细分析其性能优化策略。通过对操作系统的基本功能、主要组件以及它们之间的交互进行剖析,帮助读者理解操作系统在提高硬件资源利用率和用户体验方面所发挥的关键作用。此外,文章还将介绍几种常见的性能优化方法,包括进程调度算法、内存管理技术和I/O系统优化等,并通过实际案例展示这些优化技术的应用效果。
|
11天前
|
消息中间件 弹性计算 运维
云消息队列RabbitMQ 版架构优化评测
云消息队列RabbitMQ 版架构优化评测
30 6
|
8天前
|
人工智能 算法 安全
探索现代操作系统的架构与优化
本文深入探讨现代操作系统的核心架构及其性能优化技术。通过分析操作系统的基本功能和设计原则,阐述其在资源管理、内存分配及多任务处理方面的创新方法。进一步,文章将聚焦于如何通过内核调优、算法改进等手段提升系统效率,确保在高负载环境下的稳定性和响应速度。最后,讨论未来操作系统可能面临的挑战与发展趋势,为相关领域的研究和实践提供参考。
|
15天前
|
Kubernetes Java Android开发
用 Quarkus 框架优化 Java 微服务架构的设计与实现
Quarkus 是专为 GraalVM 和 OpenJDK HotSpot 设计的 Kubernetes Native Java 框架,提供快速启动、低内存占用及高效开发体验,显著优化了 Java 在微服务架构中的表现。它采用提前编译和懒加载技术实现毫秒级启动,通过优化类加载机制降低内存消耗,并支持多种技术和框架集成,如 Kubernetes、Docker 及 Eclipse MicroProfile,助力开发者轻松构建强大微服务应用。例如,在电商场景中,可利用 Quarkus 快速搭建商品管理和订单管理等微服务,提升系统响应速度与稳定性。
31 5
|
18天前
|
消息中间件 缓存 监控
优化微服务架构中的数据库访问:策略与实践
随着微服务架构的普及,如何高效管理和优化数据库访问成为了关键挑战。本文探讨了在微服务环境中优化数据库访问的策略,包括数据库分片、缓存机制、异步处理等技术手段。通过深入分析实际案例和最佳实践,本文旨在为开发者提供实际可行的解决方案,以提升系统性能和可扩展性。
|
23天前
|
Kubernetes 应用服务中间件 nginx
Kubernetes上安装Metallb和Ingress并部署应用程序
Kubernetes上安装Metallb和Ingress并部署nginx应用程序,使用LoadBalancer类型的KubernetesService
92 3
|
21天前
|
缓存 算法 安全
深入探索现代操作系统架构及其优化策略
本文旨在探讨现代操作系统的架构设计及其在性能优化上的关键技术。通过对操作系统的核心组件和调度机制的分析,揭示其背后的设计理念与技术挑战,同时提出针对性的优化措施,以提升系统效率和用户体验。
|
22天前
|
存储 负载均衡 数据库
探索后端技术:从服务器架构到数据库优化的实践之旅
在当今数字化时代,后端技术作为支撑网站和应用运行的核心,扮演着至关重要的角色。本文将带领读者深入后端技术的两大关键领域——服务器架构和数据库优化,通过实践案例揭示其背后的原理与技巧。无论是对于初学者还是经验丰富的开发者,这篇文章都将提供宝贵的见解和实用的知识,帮助读者在后端开发的道路上更进一步。
下一篇
无影云桌面