ELK 企业级日志分析系统 简单介绍

简介: ELK 企业级日志分析系统 简单介绍

一     ELK 简介

1, elk 是什么

ELK平台是一套完整的日志集中处理解决方案,将 ElasticSearch、Logstash 和 Kiabana 三个开源工具配合使用, 完成更强大的用户对日志的查询、排序、统计需求。

 

2,elk 架构图

3,elk 日志处理步骤

将日志进行集中化管理

将日志格式化(Logstash)并输出到Elasticsearch

对格式化后的数据进行索引和存储(Elasticsearch)

前端数据的展示(Kibana)

二    Elasticsearch 简介

1, Elasticsearch 是什么

Elasticsearch是一个实时的、分布式的可扩展的搜索引擎,允许进行全文、结构化搜索,它通常用于索引和搜索大容量的日志数据,也可用于搜索许多不同类型的文档。

说白了就是个 分布式的存储数据·的引擎

2, Elasticsearch 的核心概念

接近实时

集群

节点

索引

索引(库)->类型(表)->文档(记录)

分片和副本

3, Elasticsearch 的原理

Elasticsearch 是用 Java 开发的,可通过 RESTful Web 接口,让用户可以通过浏览器与 Elasticsearch 通信。

restful api 接口有这几个:

GET 获取     文档

POST 创建

PUT  更新

DELTET 删除

GET 搜索  值

 

三     Logstash

1, Logstash 是什么

作为数据收集引擎。它支持动态的从各种数据源搜集数据,并对数据进行过滤、分析、丰富、统一格式等操作,然后存储到用户指定的位置,一般会发送给 Elasticsearch。

Logstash 由 Ruby 语言编写,运行在 Java 虚拟机(JVM)上,是一款强大的数据处理工具, 可以实现数据传输、格式处理、格式化输出。Logstash 具有强大的插件功能,常用于日志处理。

 

2,Logstash 架构图

input(数据采集)  filter(数据过滤)  output(数据输出)

四,Logstash 的代替品

1,Filebeat

1.1,为什么Logstash 要被换掉

logstash 搜集数据再输出 但是logstash是java写的程序,会占用内存

Filebeat:轻量级的开源日志文件数据搜集器。通常在需要采集数据的客户端安装 Filebeat,并指定目录与日志格式,Filebeat 就能快速收集数据,并发送给 logstash 进或是直接发给Elasticsearch 存储,性能上相比运行于 JVM 上的 logstash 优势明显,是对它的替代。常应用于 EFLK 架构当中行解析

 

1.2,filebeat 结合 logstash 带来好处

1)通过 Logstash 具有基于磁盘的自适应缓冲系统,该系统将吸收传入的吞吐量,从而减轻 Elasticsearch 持续写入数据的压力

2)从其他数据源(例如数据库,S3对象存储或消息传递队列)中提取

3)将数据发送到多个目的地,例如S3,HDFS(Hadoop分布式文件系统)或写入文件

4)使用条件数据流逻辑组成更复杂的处理管道

 

2,缓存/消息队列(redis、kafka、RabbitMQ等)

可以对高并发日志数据进行流量削峰和缓冲,这样的缓冲可以一定程度的保护数据不丢失,还可以对整个架构进行应用解耦。

3,   Fluentd

是一个流行的开源数据收集器。由于 logstash 太重量级的缺点,Logstash 性能低、资源消耗比较多等问题,随后就有 Fluentd 的出现。相比较 logstash,Fluentd 更易用、资源消耗更少、性能更高,在数据处理上更高效可靠,受到企业欢迎,成为 logstash 的一种替代方案,常应用于 EFK 架构当中。在 Kubernetes 集群中也常使用 EFK 作为日志数据收集的方案。

在 Kubernetes 集群中一般是通过 DaemonSet 来运行 Fluentd,以便它在每个 Kubernetes 工作节点上都可以运行一个 Pod。 它通过获取容器日志文件、过滤和转换日志数据,然后将数据传递到 Elasticsearch 集群,在该集群中对其进行索引和存储。

 

五    kibana

1, kibana 是什么

Kibana 通常与 Elasticsearch 一起部署,Kibana 是 Elasticsearch 的一个功能强大的数据可视化 Dashboard,Kibana 提供图形化的 web 界面来浏览 Elasticsearch 日志数据,可以用来汇总、分析和搜索重要数据。

 

2, kibana 主要功能

Elasticsearch无缝之集成

整合数据,复杂数据分析

让更多团队成员受益

接口灵活,分享更容易

配置简单,可视化多数据源

简单数据导出

六     总结

1,为什么要使用 ELK

日志主要包括系统日志、应用程序日志和安全日志。系统运维和开发人员可以通过日志了解服务器软硬件信息、检查配置过程中的错误及错误发生的原因。经常分析日志可以了解服务器的负荷,性能安全性,从而及时采取措施纠正错误。

往往单台机器的日志我们使用grep、awk等工具就能基本实现简单分析,但是当日志被分散的储存不同的设备上。如果你管理数十上百台服务器,你还在使用依次登录每台机器的传统方法查阅日志。这样是不是感觉很繁琐和效率低下。当务之急我们使用集中化的日志管理,例如:开源的syslog,将所有服务器上的日志收集汇总。集中化管理日志后,日志的统计和检索又成为一件比较麻烦的事情,一般我们使用 grep、awk和wc等Linux命令能实现检索和统计,但是对于要求更高的查询、排序和统计等要求和庞大的机器数量依然使用这样的方法难免有点力不从心。

一般大型系统是一个分布式部署的架构,不同的服务模块部署在不同的服务器上,问题出现时,大部分情况需要根据问题暴露的关键信息,定位到具体的服务器和服务模块,构建一套集中式日志系统,可以提高定位问题的效率。

 

2,完整日志系统基本特征

收集:能够采集多种来源的日志数据

传输:能够稳定的把日志数据解析过滤并传输到存储系统

存储:存储日志数据

分析:支持 UI 分析

警告:能够提供错误报告,监控机制

 

3,ELK 的工作原理

(1)在所有需要收集日志的服务器上部署Logstash;或者先将日志进行集中化管理在日志服务器上,在日志服务器上部署 Logstash。

(2)Logstash 收集日志,将日志格式化并输出到 Elasticsearch 群集中。

(3)Elasticsearch 对格式化后的数据进行索引和存储。

(4)Kibana 从 ES 群集中查询数据生成图表,并进行前端数据的展示。

 

总结:logstash作为日志搜集器,从数据源采集数据,并对数据进行过滤,格式化处理,然后交由Elasticsearch存储,kibana对日志进行可视化处理。

相关实践学习
通过日志服务实现云资源OSS的安全审计
本实验介绍如何通过日志服务实现云资源OSS的安全审计。
相关文章
WGLOG日志管理系统是怎么收集日志的
WGLOG通过部署Agent客户端采集日志,Agent持续收集指定日志文件并上报Server,Server负责展示与分析。Agent与Server需保持相同版本。官网下载地址:www.wgstart.com
|
5月前
|
Prometheus 监控 Cloud Native
基于docker搭建监控系统&日志收集
Prometheus 是一款由 SoundCloud 开发的开源监控报警系统及时序数据库(TSDB),支持多维数据模型和灵活查询语言,适用于大规模集群监控。它通过 HTTP 拉取数据,支持服务发现、多种图表展示(如 Grafana),并可结合 Loki 实现日志聚合。本文介绍其架构、部署及与 Docker 集成的监控方案。
509 122
基于docker搭建监控系统&日志收集
|
5月前
|
消息中间件 Java Kafka
搭建ELK日志收集,保姆级教程
本文介绍了分布式日志采集的背景及ELK与Kafka的整合应用。传统多服务器环境下,日志查询效率低下,因此需要集中化日志管理。ELK(Elasticsearch、Logstash、Kibana)应运而生,但单独使用ELK在性能上存在瓶颈,故结合Kafka实现高效的日志采集与处理。文章还详细讲解了基于Docker Compose构建ELK+Kafka环境的方法、验证步骤,以及如何在Spring Boot项目中整合ELK+Kafka,并通过Logback配置实现日志的采集与展示。
1061 64
搭建ELK日志收集,保姆级教程
|
8月前
|
监控 API 开发工具
HarmonyOS Next的HiLog日志系统完全指南:从入门到精通
本文深入解析HarmonyOS Next的HiLog日志系统,涵盖日志级别、核心API、隐私保护与高级回调功能,助你从入门到精通掌握这一重要开发工具。
|
5月前
|
Ubuntu
在Ubuntu系统上设置syslog日志轮替与大小限制
请注意,在修改任何系统级别配置之前,请务必备份相应得原始档案并理解每项变更可能带来得影响。
662 2
|
7月前
|
存储
WGLOG日志管理系统可以采集网络设备的日志吗
WGLOG日志审计系统提供开放接口,支持外部获取日志内容后发送至该接口,实现日志的存储与分析。详情请访问:https://www.wgstart.com/wglog/docs9.html
|
11月前
|
存储 消息中间件 缓存
MiniMax GenAI 可观测性分析 :基于阿里云 SelectDB 构建 PB 级别日志系统
基于阿里云SelectDB,MiniMax构建了覆盖国内及海外业务的日志可观测中台,总体数据规模超过数PB,日均新增日志写入量达数百TB。系统在P95分位查询场景下的响应时间小于3秒,峰值时刻实现了超过10GB/s的读写吞吐。通过存算分离、高压缩比算法和单副本热缓存等技术手段,MiniMax在优化性能的同时显著降低了建设成本,计算资源用量降低40%,热数据存储用量降低50%,为未来业务的高速发展和技术演进奠定了坚实基础。
497 1
MiniMax GenAI 可观测性分析 :基于阿里云 SelectDB 构建 PB 级别日志系统
|
11月前
|
网络安全
window系统下安装elk
本文介绍了Elasticsearch、Logstash和Kibana(统称ELK栈)8.17.3版本的安装与配置流程。主要内容包括: - **Elasticsearch**:详细描述了从下载到启动服务的步骤,以及`elasticsearch.yml`的关键配置项,并提供了Postman操作示例及常见问题解决方案。 - **Logstash**:涵盖了插件安装、配置文件`logstash.conf`编写及其启动命令。 - **Kibana**:讲解了下载、配置`kibana.yml`和启动过程,确保与Elasticsearch正确连接。
|
11月前
|
存储 JSON Go
PHP 日志系统的最佳搭档:一个 Go 写的远程日志收集服务
为了不再 SSH 上去翻日志,我写了个 Go 小脚本,用来接收远程日志。PHP 负责记录日志,Go 负责存储和展示,按天存储、支持 API 访问、可远程管理,终于能第一时间知道项目炸了。
244 10
|
存储 监控 安全
5款 Syslog集中系统日志常用工具对比推荐
集中管理Syslog有助于持续监控网络中的恶意活动,确保日志的搜索和分析更为便捷。常用工具包括Rsyslog、Syslog-ng、Logstash和Fluentd,它们各有优劣。Rsyslog通过多种协议确保日志传输的安全性;Syslog-ng支持高效收集和转发日志;Logstash能解析多源日志并索引;Fluentd将日志转换为JSON格式。卓豪EventLog Analyzer则提供一体化的日志管理,支持日志分析、报表生成、用户行为分析及实时告警,是全面的日志管理解决方案。
311 0