从C语言到C++_40(多线程相关)C++线程接口+线程安全问题加锁(shared_ptr+STL+单例)(下)

简介: 从C语言到C++_40(多线程相关)C++线程接口+线程安全问题加锁(shared_ptr+STL+单例)

从C语言到C++_40(多线程相关)C++线程接口+线程安全问题加锁(shared_ptr+STL+单例)(中);https://developer.aliyun.com/article/1522534

2. shared_ptr线程安全

智能指针复习:从C语言到C++_36(智能指针RAII)auto_ptr+unique_ptr+shared_ptr+weak_ptr-CSDN博客

以前敲的shared_ptr(加一个返回引用计数的接口):

namespace rtx
{
  template<class T>
  class shared_ptr
  {
  public:
    shared_ptr(T* ptr = nullptr)
      : _ptr(ptr)
      , _pCount(new int(1))
    {}
 
    void Release()
    {
      if (--(*_pCount) == 0) // 防止产生内存泄漏,和析构一样,写成一个函数
      {
        delete _ptr;
        delete _pCount;
      }
    }
    ~shared_ptr()
    {
      Release();
    }
 
    shared_ptr(const shared_ptr<T>& sp)
      : _ptr(sp._ptr)
      , _pCount(sp._pCount)
    {
      (*_pCount)++;
    }
 
    shared_ptr<T>& operator=(const shared_ptr<T>& sp)
    {
      //if (this != &sp)
      if (_ptr != sp._ptr) // 防止自己给自己赋值,注意不能比较this,类似s1 = s2; 再来一次s1 = s2;
      {                    // 比较_pCount也行
        //if (--(*_pCount) == 0) // 防止产生内存泄漏,和析构一样,写成一个函数
        //{
        //  delete _ptr;
        //  delete _pCount;
        //}
        Release();
 
        _ptr = sp._ptr;
        _pCount = sp._pCount;
        (*_pCount)++;
      }
      return *this;
    }
 
    T& operator*()
    {
      return *_ptr;
    }
    T* operator->()
    {
      return _ptr;
    }
    int use_count()
    {
      return *_pCount;
    }
  protected:
    T* _ptr;
    int* _pCount;// 引用计数,有多线程安全问题,学了linux再讲,不能用静态成员
  };
}

先看看库里面的使用:

int main()
{
  std::shared_ptr<double> sp1(new double(7.77));
  std::shared_ptr<double> sp2(sp1);
 
  mutex mtx;
 
  vector<thread> v(5);
  int n = 100000;
  for (auto& t : v)
  {
    t = thread([&](){
      for (size_t i = 0; i < n; ++i)
      {
        // 拷贝是线程安全的
        std::shared_ptr<double> sp(sp1);
 
        // 访问资源不是
        (*sp)++;
      }
    });
  }
 
  for (auto& t : v)
  {
    t.join();
  }
  cout << *sp1 << endl;
  cout << sp1.use_count() << endl;
  return 0;
}


2.1 库里面的shared_ptr使用

能指针共同管理的动态内存空间是线程不安全的,访问资源要自己加锁:

再把std换成自己的命名空间:

程序直接崩溃了,因为有时候引用计数不对。

       多个线程及主线程中的所有智能指针都共享引用计数,又因为拷贝构造以及析构都不是原子的,所以导致线程不安全问题。

解决办法和Linux中一样,需要加锁:

引用计数加加和减减都要加锁

放个代码:

2.2 shared_ptr加锁代码

namespace rtx
{
  template<class T>
  class shared_ptr
  {
  public:
    shared_ptr(T* ptr = nullptr)
      : _ptr(ptr)
      , _pCount(new int(1))
      ,_pMtx(new mutex)
    {}
 
    shared_ptr(const shared_ptr<T>& sp)
      : _ptr(sp._ptr)
      , _pCount(sp._pCount)
      , _pMtx(sp._pMtx)
    {
      _pMtx->lock();
      (*_pCount)++;
      _pMtx->unlock();
    }
 
    shared_ptr<T>& operator=(const shared_ptr<T>& sp)
    {
      //if (this != &sp)
      if (_ptr != sp._ptr) // 防止自己给自己赋值,注意不能比较this,类似s1 = s2; 再来一次s1 = s2;
      {                    // 比较_pCount也行
        //if (--(*_pCount) == 0) // 防止产生内存泄漏,和析构一样,写成一个函数
        //{
        //  delete _ptr;
        //  delete _pCount;
        //}
        Release();
 
        _ptr = sp._ptr;
        _pCount = sp._pCount;
        _pMtx->lock();
        (*_pCount)++;
        _pMtx->unlock();
      }
      return *this;
    }
 
    void Release() // 防止产生内存泄漏,和析构一样,写成一个函数
    {
      bool flag = false;
 
      _pMtx->lock();
      if (--(*_pCount) == 0)
      {
        delete _ptr;
        delete _pCount;
 
        flag = true;
      }
      _pMtx->unlock();
 
      if (flag)
      {
        delete _pMtx; // new出来的,引用计数为0时要delete
      }
    }
    ~shared_ptr()
    {
      Release();
    }
 
    T& operator*()
    {
      return *_ptr;
    }
    T* operator->()
    {
      return _ptr;
    }
    int use_count()
    {
      return *_pCount;
    }
  protected:
    T* _ptr;
    int* _pCount;// 引用计数,有多线程安全问题,学了linux再讲,不能用静态成员
    mutex* _pMtx;
  };
}
 
int main()
{
  rtx::shared_ptr<double> sp1(new double(7.77));
  rtx::shared_ptr<double> sp2(sp1);
 
  mutex mtx;
 
  vector<thread> v(7);
  int n = 100000;
  for (auto& t : v)
  {
    t = thread([&](){
      for (size_t i = 0; i < n; ++i)
      {
        // 拷贝是线程安全的
        rtx::shared_ptr<double> sp(sp1);
 
        // 访问资源不是
        mtx.lock();
        (*sp)++;
        mtx.unlock();
      }
    });
  }
 
  for (auto& t : v)
  {
    t.join();
  }
  cout << *sp1 << endl;
  cout << sp1.use_count() << endl;
  return 0;
}


3. 单例模式线程安全

单例模式复习:

从C语言到C++_37(特殊类设计和C++类型转换)单例模式-CSDN博客


3.1 懒汉模式线程安全问题

       在C++11之后饿汉模式是没有线程安全问题的(做了相关补丁),因为单例对象是在main函数之前就实例化的,而多线程都是在main函数里面启动的。

       但是懒汉模式是存在线程安全问题的,当多个线程使用到单例对象时候,在使用GetInstance()获取对象时,用因为调度问题出现误判,导致new多个单例对象。

这里给懒汉模式加个锁:(这里在getInstance这样加锁有没有什么问题?)


      此时,每个调用GetInstance()的线程都需要申请锁然后释放锁,对锁的操作也是有开销的,会有效率上的损失。


       单例模式在单例一经创建以后就不会再创建了,无论多少线程在访问已经创建的单例对象时都不会再创建,线程就已经安全了。所以在单例对象创建以后,根本没有必要再去申请锁和释放锁。


       如果把加锁放在 if 里面呢?这样是不行的,因为第二次线程来的时候单例对象已经不是空的了,所以锁就白加了。


此时就要双检查加锁:

3.2 懒汉模式最终代码

class Singleton
{
public:
  static Singleton* GetInstance()
  {
    // 双检查加锁
    if (m_pInstance == nullptr) // 保护第一次后,后续不需要加锁
    {
      unique_lock<mutex> lock(_mtx); // 加锁,防止new抛异常就用unique_lock
      if (m_pInstance == nullptr) // 保护第一次时,线程安全
      {
        m_pInstance = new Singleton;
      }
    }
 
    return m_pInstance;
  }
 
private:
  Singleton() // 构造函数
  {}
  Singleton(const Singleton& s) = delete; // 禁止拷贝
  Singleton& operator=(const Singleton& s) = delete; // 禁止赋值
 
  // 静态单例对象指针
  static Singleton* m_pInstance; // 单例对象指针
  static mutex _mtx;
};
 
Singleton* Singleton::m_pInstance = nullptr; // 初始化为空
mutex Singleton::_mtx;
 
int main()
{
  Singleton* ps = Singleton::GetInstance();//获取单例对象
 
  return 0;
}


成功运行。


3.3 懒汉模式的另一种写法

放个代码:

class Singleton
{
public:
  static Singleton* GetInstance()
  {
    // 局部的静态对象,第一次调用时初始化
 
    // 在C++11之前是不能保证线程安全的
    // C++11之前局部静态对象的构造函数调用初始化并不能保证线程安全的原子性。
    // C++11的时候修复了这个问题,所以这种写法,只能在支持C++11以后的编译器上使用
    static Singleton _s;
    return &_s;
  }
 
private:
  // 构造函数私有
  Singleton()
  {};
 
  Singleton(Singleton const&) = delete;
  Singleton& operator=(Singleton const&) = delete;
};
 
int main()
{
  Singleton::GetInstance();
 
  return 0;
}

C++11之前局部静态对象的构造函数调用初始化并不能保证线程安全的原子性。

C++11的时候修复了这个问题,所以这种写法,只能在支持C++11以后的编译器上使用。

本篇完。

       应该算是本专栏的最后一篇了,泪目泪目。道阻且长,行则将至,想再深入学习C++以后就靠自己拓展了。后一部分就是网络和Linux网络的内容了。

目录
相关文章
|
6月前
|
安全 算法 Java
Java 多线程:线程安全与同步控制的深度解析
本文介绍了 Java 多线程开发的关键技术,涵盖线程的创建与启动、线程安全问题及其解决方案,包括 synchronized 关键字、原子类和线程间通信机制。通过示例代码讲解了多线程编程中的常见问题与优化方法,帮助开发者提升程序性能与稳定性。
286 0
|
6月前
|
安全 C语言 C++
比较C++的内存分配与管理方式new/delete与C语言中的malloc/realloc/calloc/free。
在实用性方面,C++的内存管理方式提供了面向对象的特性,它是处理构造和析构、需要类型安全和异常处理的首选方案。而C语言的内存管理函数适用于简单的内存分配,例如分配原始内存块或复杂性较低的数据结构,没有构造和析构的要求。当从C迁移到C++,或在C++中使用C代码时,了解两种内存管理方式的差异非常重要。
233 26
|
6月前
|
数据采集 监控 调度
干货分享“用 多线程 爬取数据”:单线程 + 协程的效率反超 3 倍,这才是 Python 异步的正确打开方式
在 Python 爬虫中,多线程因 GIL 和切换开销效率低下,而协程通过用户态调度实现高并发,大幅提升爬取效率。本文详解协程原理、实战对比多线程性能,并提供最佳实践,助你掌握异步爬虫核心技术。
|
7月前
|
Java 数据挖掘 调度
Java 多线程创建零基础入门新手指南:从零开始全面学习多线程创建方法
本文从零基础角度出发,深入浅出地讲解Java多线程的创建方式。内容涵盖继承`Thread`类、实现`Runnable`接口、使用`Callable`和`Future`接口以及线程池的创建与管理等核心知识点。通过代码示例与应用场景分析,帮助读者理解每种方式的特点及适用场景,理论结合实践,轻松掌握Java多线程编程 essentials。
481 5
|
11月前
|
Python
python3多线程中使用线程睡眠
本文详细介绍了Python3多线程编程中使用线程睡眠的基本方法和应用场景。通过 `time.sleep()`函数,可以使线程暂停执行一段指定的时间,从而控制线程的执行节奏。通过实际示例演示了如何在多线程中使用线程睡眠来实现计数器和下载器功能。希望本文能帮助您更好地理解和应用Python多线程编程,提高程序的并发能力和执行效率。
425 20
|
4月前
|
存储 C语言
`scanf`是C语言中用于按格式读取标准输入的函数
`scanf`是C语言中用于按格式读取标准输入的函数,通过格式字符串解析输入并存入指定变量。需注意输入格式严格匹配,并建议检查返回值以确保读取成功,提升程序健壮性。
1074 0
|
12月前
|
存储 算法 C语言
【C语言程序设计——函数】素数判定(头歌实践教学平台习题)【合集】
本内容介绍了编写一个判断素数的子函数的任务,涵盖循环控制与跳转语句、算术运算符(%)、以及素数的概念。任务要求在主函数中输入整数并输出是否为素数的信息。相关知识包括 `for` 和 `while` 循环、`break` 和 `continue` 语句、取余运算符 `%` 的使用及素数定义、分布规律和应用场景。编程要求根据提示补充代码,测试说明提供了输入输出示例,最后给出通关代码和测试结果。 任务核心:编写判断素数的子函数并在主函数中调用,涉及循环结构和条件判断。
742 23
|
6月前
|
安全 C语言
C语言中的字符、字符串及内存操作函数详细讲解
通过这些函数的正确使用,可以有效管理字符串和内存操作,它们是C语言编程中不可或缺的工具。
348 15
|
11月前
|
人工智能 Java 程序员
一文彻底搞清楚C语言的函数
本文介绍C语言函数:函数是程序模块化的工具,由函数头和函数体组成,涵盖定义、调用、参数传递及声明等内容。值传递确保实参不受影响,函数声明增强代码可读性。君志所向,一往无前!
472 1
一文彻底搞清楚C语言的函数
|
12月前
|
算法 C语言
【C语言程序设计——函数】利用函数求解最大公约数和最小公倍数(头歌实践教学平台习题)【合集】
本文档介绍了如何编写两个子函数,分别求任意两个整数的最大公约数和最小公倍数。内容涵盖循环控制与跳转语句的使用、最大公约数的求法(包括辗转相除法和更相减损术),以及基于最大公约数求最小公倍数的方法。通过示例代码和测试说明,帮助读者理解和实现相关算法。最终提供了完整的通关代码及测试结果,确保编程任务的成功完成。
669 15
【C语言程序设计——函数】利用函数求解最大公约数和最小公倍数(头歌实践教学平台习题)【合集】

热门文章

最新文章