我们该如何看待AIGC(人工智能)

简介: 我们该如何看待AIGC(人工智能)

AIGC全称为AI-Generated Content,指基于生成对抗网络GAN、大型预训练模型等人工智能技术,通过已有数据寻找规律,并通过适当的泛化能力生成相关内容的技术。与之相类似的概念还包括Synthetic media,合成式媒体,主要指基于AI生成的文字、图像、音频等。

 

从字面意思上看,AIGC是相对于过去的 PCG、UCG 而提出的。因此,AIGC的狭义概念是利用Al自动生成内容的生产方式。但是 AIGC已经代表了AI技术发展的新趋势。文心一言 (baidu.com)

 

它是一个涵盖了人工智能、计算机图形学和深度学习等领域技术的综合平台。AIGC技术的核心是利用人工智能算法对系统进行建模和预测,实现对系统的智能控制。它不需要对系统进行精确的建模,而是通过对系统的大量数据进行学习,自动发现系统的规律和特征,从而实现对系统的智能控制。

 

AIGC的主要应用领域包括图像生成、音视频创作与生成、电影与游戏制作、科研与创新等。在智能安防领域,AIGC可以通过图像识别技术实现人脸识别、车辆识别等功能,提升安全监控的效率和准确性;在游戏和虚拟现实领域,AIGC可以实现高度逼真的图像渲染和物理模拟,提升游戏体验。此外,AIGC还可以应用于药物设计、材料科学等领域,加速技术创新和发展。

 

AIGC的发展历程中,从初期的学术界研究人员和感兴趣的学生组成的组织,逐渐扩大影响力并吸引了越来越多的人工智能专家和科技公司加入。现在,AIGC已经成为一个全球性的人工智能社群组织,与各个领域的专家学者、企业家、政府官员等建立了广泛的合作关系。

 

 

 

 

那么,AIGC是怎么产生和发展的呢?接下来谈谈AIGC的崛起历程。

 

AIGC的发展经历:

AIGC发展历程和典型事件

虽然从严格意义上来说,1957 年莱杰伦·希勒(Lejaren Hiller)和伦纳德·艾萨克森(Leon-ard saacson)

 

在AIGC发展的初期阶段,主要是在实验室中进行探索和研究。研究人员开始使用深度学习算法,尝试生成图片、音乐、文本等内容,以及将不同类型的内容进行结合和生成。

 

完成了人类历史上第一支由计算机创作的音乐作品就可以看作是 AIGC的开端,距今已有 65 年,这期间也不断有各种形式的生成模型、Al 生成作品出现。

 

但是 2022年才真正算是 AIGC 的爆发之年,人们看到了 AIGC无限的创造潜力和未来应用可能性。目前,AIGC 技术沉淀、产业生态已初步形成,保持强劲发展和创新势头。

 

 

 

 

主流生成模型诞生历程

 

 

 

 

生成算法、预训练模型、多模态等AI技术累积融合,催生了AIGC 的大爆发。

 

一是,基础的生成算法模型不断突破创新。

 

2014年,伊恩·古德费洛(lan Goodfellow)提出的生成对抗网络(Generative Adversarial Network,GAN)成为早期最为著名的生成模型。

 

GAN 使用合作的零和博弈框架来学习,被广泛用于生成图像、视频、语音和三维物体模型等。GAN 也产生了许多流行的架构或变种,如DCGAN,StyleGAN,BigGAN,StackGAN.Pix2pix,Age-cGAN,CycleGAN、对抗自编码器(Adversarial Autoencoders,AAE)、对抗推断学习(Adversarially Learned Inference,ALI)等。

 

随后,Transformer、基于流的生成模型(Flow-based models)、扩散模型(Diffusion Model)等深度学习的生成算法相继涌现。其中,Transformer 模型是一种采用自注意力机制的深度学习模型,这一机制可以按照输入数据各部分重要性的不同而分配不同的权重,可以用在自然语言处理(NLP)、计算机视觉(CV)领域应用。后来出现的 BERT、GPT-3、LaMDA等预训练模型都是基于Transformer 模型建立的。

 

而扩散模型(Diffusion Mode)是受非平衡热力学的启发,定义一个扩散步骤的马尔可夫链,逐渐向数据添加随机噪声,然后学习逆扩散过程,从噪声中构建所需的数据样本。扩散模型最初设计用于去除图像中的噪声。随着降噪系统的训练时间越来越长并且越来越好,它们最终可以从纯噪声作为唯一输入生成逼直的图片。

 

然而,从最优化模型性能的角度出发,扩散模型相对 GAN 来说具有更加灵活的模型架构和精确的对数似然计算,已经取代 GAN 成为最先进的图像生成器。2021年6月,OpenAl 发表论文已经明确了这个结论和发展趋势。

 

AIGC的发展带来的机遇:

提高生产力和效率:AI技术的应用可以大幅提高生产力和工作效率。例如,自动化的工具和系统可以实现生产过程的自动化、智能化,从而提高生产效率。这不仅有助于企业降低成本,还能提升产品质量和客户满意度。

 

如下是用ai生成的一段二叉树代码(python示例):

 

class Node:  
    def __init__(self, data):  
        self.left = None  
        self.right = None  
        self.data = data  
  
class BinaryTree:  
    def __init__(self):  
        self.root = None  
  
    def insert(self, data):  
        if self.root is None:  
            self.root = Node(data)  
        else:  
            self._insert(data, self.root)  
  
    def _insert(self, data, node):  
        if data < node.data:  
            if node.left is None:  
                node.left = Node(data)  
            else:  
                self._insert(data, node.left)  
        else:  
            if node.right is None:  
                node.right = Node(data)  
            else:  
                self._insert(data, node.right)  
  
    def find(self, data):  
        if self.root is None:  
            return False  
        else:  
            return self._find(data, self.root)  
  
    def _find(self, data, node):  
        if data == node.data:  
            return True  
        elif data < node.data and node.left is not None:  
            return self._find(data, node.left)  
        elif data > node.data and node.right is not None:  
            return self._find(data, node.right)  
        return False  
  
    def inorder_traversal(self, node, visit):  
        if node is not None:  
            self.inorder_traversal(node.left, visit)  
            visit(node)  
            self.inorder_traversal(node.right, visit)

# 使用示例:  

tree = BinaryTree()  
tree.insert(10)  
tree.insert(5)  
tree.insert(15)  
tree.insert(3)  
tree.insert(7)  
tree.insert(13)  
tree.insert(17)

 

# 查找元素是否存在  

print(tree.find(7))  # 输出:True  
print(tree.find(20))  # 输出:False

 

# 中序遍历二叉树(输出结果应有序)  

def visit(node):  
    print(node.data, end=' ')  
tree.inorder_traversal(tree.root, visit)  # 输出:3 5 7 10 13 15 17

 

促进创新和发展:AI技术的不断进步为创新和发展提供了新的动力。通过AI技术,我们可以解决以往难以解决的问题,推动技术和产业的创新。比如,AI在医疗、交通、教育等领域的应用,都为我们提供了新的发展思路和解决方案。

 

改善生活品质:AI技术也为我们的生活带来了诸多便利。智能家居系统、智能手机助手等应用,都使我们的生活变得更加智能化和便捷。同时,AI还在医疗、教育等领域提供了更加个性化的服务,提升了我们的生活质量。

 

创造新的产业和就业机会:AI技术的发展也催生了新的产业和就业机会。比如,智能制造、智能物流等领域的快速发展,不仅提高了生产效率,还为社会创造了大量的就业岗位。此外,AI技术的应用还带动了虚拟现实、增强现实等新兴产业的发展。

 

推动社会进步:AI技术在医疗、交通等领域的应用,也在推动社会的进步和发展。例如,AI技术可以帮助医生进行更准确的诊断和治疗,提高医疗水平和效率;在交通领域,AI技术可以优化交通流量,减少交通事故,提高交通安全性。

 

总的来说,AI发展带来的机遇是全方位的,它不仅提高了我们的生产力和效率,还促进了创新和发展,改善了我们的生活品质,创造了新的产业和就业机会,推动了社会的进步和发展。然而,同时我们也要看到AI发展带来的挑战,如就业岗位的变革、隐私和安全问题等,需要我们在享受AI带来的便利的同时,也要积极应对这些挑战。

 

我们该如何去看待AIGC:

首先,从技术的角度来看,AIGC的发展代表了人工智能技术的进步。它不仅能够模仿人类的语言和思维,生成具有逻辑性和连贯性的内容,而且还在不断学习和进化,使得生成的内容越来越接近人类真实创作的水平。这种技术的突破为各行各业带来了创新的可能性,尤其是在内容创作、客户服务、教育等领域。

 

其次,从应用的角度来看,AIGC正在逐渐改变我们的生活方式。它可以帮助我们更高效地获取信息、处理工作和娱乐。例如,在写作领域,AIGC可以辅助作家完成初稿,节省大量的时间和精力;在客户服务领域,AIGC可以实现24小时不间断的服务,提高客户满意度;在教育领域,AIGC可以为学生提供个性化的学习体验,帮助他们更好地掌握知识。

 

然而,我们也要看到AIGC存在的挑战和问题。一方面,AIGC的发展可能加剧信息过载的问题。随着越来越多的内容被生成,我们如何筛选和辨别真实、有价值的信息将成为一个难题。另一方面,AIGC的广泛应用也可能引发一些法律和伦理问题。例如,如果AIGC生成的内容侵犯了他人的知识产权或隐私,那么如何界定责任和进行维权将是一个复杂的问题。

 

因此,在看待AIGC时,我们需要保持理性和客观的态度。既要看到它带来的机遇和潜力,也要关注其可能带来的挑战和问题。同时,我们还需要加强相关法规和伦理规范的制定和执行,以确保AIGC的健康发展并造福社会。

 

总之,AIGC是一个充满潜力和挑战的领域。我们应该以开放的心态去接纳它,并在实践中不断探索和创新,以充分发挥其优势并克服其不足。

相关文章
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
探索AIGC的底层技术:人工智能通用计算架构
探索AIGC的底层技术:人工智能通用计算架构
274 3
|
6月前
|
机器学习/深度学习 数据采集 人工智能
|
5月前
|
人工智能 自然语言处理 搜索推荐
人工智能的奇妙世界:从 AI 到 AIGC,再到大模型与 AGI
人工智能的奇妙世界:从 AI 到 AIGC,再到大模型与 AGI
193 0
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
什么是AIGC(人工智能生成内容)
AIGC是一种新的人工智能技术,它的全称是Artificial Intelligence Generative Content,即人工智能生成内容。它是一种基于机器学习和自然语言处理的技术,能够自动产生文本、图像、音频等多种类型的内容。这些内容可以是新闻文章、小说、图片、音乐,甚至可以是软件代码。AIGC系统通过分析大量的数据和文本,学会了模仿人类的创造力,生成高质量的内容。AIGC涵盖了从简单的自动化文本生成到复杂的视觉艺术创作等广泛的应用。
245 4
|
7月前
|
人工智能 自然语言处理 机器人
【AIGC】大型语言模型在人工智能规划领域模型生成中的探索
【AIGC】大型语言模型在人工智能规划领域模型生成中的探索
117 6
|
7月前
|
人工智能 自然语言处理 搜索推荐
AIGC(Artificial Intelligence Generated Content,人工智能生成内容)
AIGC(Artificial Intelligence Generated Content,人工智能生成内容)
133 4
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
生成式人工智能(AIGC,Generative AI)
生成式人工智能(AIGC,Generative AI)
219 3
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能生成内容(AIGC)
人工智能生成内容(AIGC)
105 0
|
7月前
|
人工智能 自然语言处理 搜索推荐
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
生成式人工智能(AIGC,Generative AI)
生成式人工智能(AIGC,Generative AI)
366 0