YOLOv8 | 卷积模块 | 提高网络的灵活性和表征能力的动态卷积【附代码+小白可上手】

本文涉及的产品
视觉智能开放平台,视频资源包5000点
视觉智能开放平台,图像资源包5000点
视觉智能开放平台,分割抠图1万点
简介: 本教程介绍了如何在YOLOv8中使用动态卷积提升网络性能和灵活性。动态卷积利用注意力机制动态选择和组合卷积核,适应输入数据特征,解决了轻量级CNN的局限。文中提供了详细步骤教读者如何添加和修改代码,包括在`conv.py`中添加`Dynamic_conv2d`模块,更新`init.py`、`task.py`和`yaml`配置文件。此外,还分享了完整代码和进阶技巧,帮助深度学习初学者实践目标检测。参考[YOLOv8改进](https://blog.csdn.net/m0_67647321/category_12548649.html)专栏获取更多详情。


💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡

轻量级卷积神经网络由于其低计算预算限制了CNNs的深度(卷积层数)和宽度(通道数),导致了性能下降和表示能力受限的问题。而动态卷积恰好能解决这一问题,这是一种增加模型复杂性而不增加网络深度或宽度的新设计。本文给大家带来的教程是将YOLOv8的Conv用Dynamic_conv替换来提取特征。文章在介绍主要的原理后,将手把手教学如何进行模块的代码添加和修改,并将修改后的完整代码放在文章的最后,方便大家一键运行,小白也可轻松上手实践。此外还增加了进阶模块,来提高学有能力的同学进一步增长知识。帮助您更好地学习深度学习目标检测YOLO系列的挑战。

专栏地址:YOLOv8改进——更新各种有效涨点方法——点击即可跳转

1. 原理

image.png

动态卷积的是基于注意力机制的,它允许网络动态地选择和组合多个卷积核,以适应输入数据的不同部分或特征。

  • 多个卷积核的选择:

在传统的卷积操作中,每个卷积层通常使用固定的卷积核。而在动态卷积中,会事先定义一组多个卷积核,这些卷积核可能具有不同的大小和形状。

  • 注意力机制:

动态卷积通过引入注意力机制来决定在每个位置使用哪些卷积核。这个注意力可以根据输入数据的不同部分或特征动态地调整,以使网络能够更好地捕捉输入数据的相关信息。

  • 卷积核的组合:

根据注意力机制的输出,动态卷积会动态地选择并组合多个卷积核。这种组合可以通过加权求和的方式进行,其中每个卷积核的权重由注意力机制确定。

  • 非线性激活:

组合后的卷积核将应用于输入数据,并通过非线性激活函数(如ReLU)产生输出特征图。

  • 网络训练:

在训练过程中,网络将根据损失函数反向传播并更新注意力机制的参数,以使网络能够学习到适合任务的最佳注意力分配方式。

总的来说,动态卷积通过引入注意力机制和动态地选择和组合多个卷积核,使网络能够更灵活地适应输入数据的不同部分或特征,从而提高网络的表征能力和性能。

YOLOv8 | 卷积模块 | 提高网络的灵活性和表征能力的动态卷积【附代码+小白可上手】——完整代码点击即可跳转

2. 代码实现

2.1 将代码添加到YOLOv8中

关键步骤一:将下面代码粘贴到在/ultralytics/ultralytics/nn/modules/conv.py中,并在该文件的all中添加“Dynamic_conv2d”

import torch
import torch.nn as nn
import torch.nn.functional as F

class attention2d(nn.Module):
    def __init__(self, in_planes, ratios, K, temperature, init_weight=True):
        super(attention2d, self).__init__()
        assert temperature%3==1
        self.avgpool = nn.AdaptiveAvgPool2d(1)
        if in_planes!=3:
            hidden_planes = int(in_planes*ratios)
        else:
            hidden_planes = K
        self.fc1 = nn.Conv2d(in_planes, hidden_planes, 1, bias=False)
        self.fc2 = nn.Conv2d(hidden_planes, K, 1, bias=False)
        self.temperature = temperature
        if init_weight:
            self._initialize_weights()


    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)

    def updata_temperature(self):
        if self.temperature!=1:
            self.temperature -=3
            print('Change temperature to:', str(self.temperature))


    def forward(self, x):
        x = self.avgpool(x)
        x = self.fc1(x)
        x = F.relu(x)
        x = self.fc2(x).view(x.size(0), -1)
        return F.softmax(x/self.temperature, 1)


class Dynamic_conv2d(nn.Module):
    def __init__(self, in_planes, out_planes, kernel_size, ratio=0.25, stride=1, padding=0, dilation=1, groups=1, bias=True, K=4,temperature=34, init_weight=True):
        super(Dynamic_conv2d, self).__init__()
        assert in_planes%groups==0
        self.in_planes = in_planes
        self.out_planes = out_planes
        self.kernel_size = kernel_size
        self.stride = stride
        self.padding = padding
        self.dilation = dilation
        self.groups = groups
        self.bias = bias
        self.K = K
        self.attention = attention2d(in_planes, ratio, K, temperature)

        self.weight = nn.Parameter(torch.Tensor(K, out_planes, in_planes//groups, kernel_size, kernel_size), requires_grad=True)
        if bias:
            self.bias = nn.Parameter(torch.Tensor(K, out_planes))
        else:
            self.bias = None
        if init_weight:
            self._initialize_weights()

        #TODO 初始化
    def _initialize_weights(self):
        for i in range(self.K):
            nn.init.kaiming_uniform_(self.weight[i])


    def update_temperature(self):

2.2 更改init.py文件

然后在下面的all中声明函数

2.3 在task.py中进行注册

2.4 添加yaml文件

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024] # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]

  - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 9

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, C2f, [512]] # 12

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 3, C2f, [256]] # 15 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]] # cat head P4
  - [-1, 3, C2f, [512]] # 18 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]] # cat head P5
  - [-1, 3, C2f, [1024]] # 21 (P5/32-large)

  - [[15, 18, 21], 1, Detect, [nc]] # Detect(P3, P4, P5)

温馨提示:因为本文只是对yolov8n基础上添加模块,如果要对yolov8n/l/m/x进行添加则只需要指定对应的depth_multiple 和 width_multiple。或者指定某个模型即可

# YOLOv8n
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple

# YOLOv8s
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple

# YOLOv8l 
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple

# YOLOv8m
depth_multiple: 0.67  # model depth multiple
width_multiple: 0.75  # layer channel multiple

# YOLOv8x
depth_multiple: 1.33  # model depth multiple
width_multiple: 1.25  # layer channel multiple

2.5 执行程序

from ultralytics import YOLO

# Load a model
# model = YOLO('yolov8n.yaml')  # build a new model from YAML
# model = YOLO('yolov8n.pt')  # load a pretrained model (recommended for training)

model = YOLO(r'/projects/ultralytics/ultralytics/cfg/models/v8/yolov8_dynamic.yaml')  # build from YAML and transfer weights

# Train the model
model.train(device = [2], batch=16)

建议大家写绝对路径,确保一定能找到

🚀运行程序,如果出现下面的内容则说明添加成功🚀

3. 完整代码分享

YOLOv8 | 卷积模块 | 提高网络的灵活性和表征能力的动态卷积【附代码+小白可上手】——完整代码点击即可跳转

提取码: ypir

4. 进阶

如果想计算量变化更小,如何修改呢,看过我的修改你是否学会了呢?不如动手试试吧

如果你想尝试但又不知从何下手,可以在评论区问问大家,我看到后也会及时回复

5. 总结

动态卷积是一种通过引入注意力机制,动态选择和组合多个卷积核的方法,以提高卷积神经网络的表征能力和性能。通过在每个位置上根据输入数据的不同部分或特征动态调整卷积核的选择和权重,动态卷积能够更灵活地捕获输入数据的相关信息,并产生更具表征能力的特征表示。在训练过程中,网络通过反向传播算法优化注意力机制的参数,并更新卷积核的参数,从而学习到适合任务的最佳注意力分配方式和特征表示,进而提高了网络的性能,优化图像分类或目标检测的准确率。

相关文章
|
21天前
|
机器学习/深度学习 计算机视觉 Python
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力本文提出了一种简单且高效的卷积神经网络(ConvNets)注意力模块——SimAM。与现有模块不同,SimAM通过优化能量函数推断特征图的3D注意力权重,无需添加额外参数。SimAM基于空间抑制理论设计,通过简单的解决方案实现高效计算,提升卷积神经网络的表征能力。代码已在Pytorch-SimAM开源。
【YOLOv11改进 - 注意力机制】SimAM:轻量级注意力机制,解锁卷积神经网络新潜力
|
15天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络:从理论到实践
【10月更文挑战第35天】在人工智能的浪潮中,深度学习技术以其强大的数据处理能力成为科技界的宠儿。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,在图像识别和视频分析等领域展现出了惊人的潜力。本文将深入浅出地介绍CNN的工作原理,并结合实际代码示例,带领读者从零开始构建一个简单的CNN模型,探索其在图像分类任务中的应用。通过本文,读者不仅能够理解CNN背后的数学原理,还能学会如何利用现代深度学习框架实现自己的CNN模型。
|
14天前
|
机器学习/深度学习 人工智能 算法框架/工具
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第36天】探索卷积神经网络(CNN)的神秘面纱,揭示其在图像识别领域的威力。本文将带你了解CNN的核心概念,并通过实际代码示例,展示如何构建和训练一个简单的CNN模型。无论你是深度学习的初学者还是希望深化理解,这篇文章都将为你提供有价值的见解。
|
25天前
|
机器学习/深度学习 监控 自动驾驶
卷积神经网络有什么应用场景
【10月更文挑战第23天】卷积神经网络有什么应用场景
41 2
|
25天前
|
机器学习/深度学习 自然语言处理 算法
什么是卷积神经网络
【10月更文挑战第23天】什么是卷积神经网络
35 1
|
28天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
72 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
15天前
|
机器学习/深度学习 人工智能 自动驾驶
深入解析深度学习中的卷积神经网络(CNN)
深入解析深度学习中的卷积神经网络(CNN)
32 0
|
18天前
|
机器学习/深度学习 人工智能 TensorFlow
深度学习中的卷积神经网络(CNN)及其在图像识别中的应用
【10月更文挑战第32天】本文将介绍深度学习中的一个重要分支——卷积神经网络(CNN),以及其在图像识别领域的应用。我们将通过一个简单的代码示例,展示如何使用Python和TensorFlow库构建一个基本的CNN模型,并对其进行训练和测试。
|
24天前
|
机器学习/深度学习 自然语言处理 TensorFlow
深度学习中的卷积神经网络(CNN)及其应用
【10月更文挑战第26天】在这篇文章中,我们将深入探讨卷积神经网络(CNN)的基本原理、结构和应用。CNN是深度学习领域的一个重要分支,广泛应用于图像识别、语音处理等领域。我们将通过代码示例和实际应用案例,帮助读者更好地理解CNN的概念和应用。
|
26天前
|
机器学习/深度学习 算法 计算机视觉
深度学习与生活:如何利用卷积神经网络识别日常物品
【10月更文挑战第24天】在这篇文章中,我们将探索深度学习如何从理论走向实践,特别是卷积神经网络(CNN)在图像识别中的应用。通过一个简单的示例,我们将了解如何使用CNN来识别日常生活中的物体,如水果和家具。这不仅是对深度学习概念的一次直观体验,也是对技术如何融入日常生活的一次深刻反思。文章将引导读者思考技术背后的哲理,以及它如何影响我们的生活和思维方式。
下一篇
无影云桌面