多线程(JUC, ReentrantLock, 原子类, 线程池, 信号量 Semaphore, CountDownLatch)

简介: 多线程(JUC, ReentrantLock, 原子类, 线程池, 信号量 Semaphore, CountDownLatch)

JUC

Java.util.concurrent 包, 存放了并发编程相关的组件, 目的是更好的支持高并发任务 (多线程只是实现并发编程的一种具体方式 …)


ReentrantLock

  • synchronized 对对象加锁, 保护临界资源
  • ReentreatLock 使用 lock 方法和 unlock 方法,加锁对象是 ReentrantLock 的实例

核心方法

  • lock(): 加锁, 获取不到锁就死等
  • trylock(超时时间):尝试加锁, 如果获取不到锁, 等待一段时间后就放弃加锁
  • unlock(): 解锁

ReentrantLock 使用

由于 reentreatLock 需要手动释放, 因此推荐 try finally 的写法

// ReentrantLock 使用
public class ThreadDemo12 {
    public static void main(String[] args) {
        // true -- 公平锁       false/默认 都是非公平锁
        ReentrantLock reentrantLock = new ReentrantLock(true);
    boolean ok = reentrantLock.tryLock();
    // boolean ok = reentrantLock.lock()
        try {
            
            if (ok) {
                System.out.println("代码逻辑");
            }else {
                System.out.println("代码逻辑");
            }
        }finally {
            reentrantLock.unlock();
        }
    }

ReentrantLock 和 synchronized 比较

  1. synchronized 是关键字, 是 JVM 内部实现的
    ReentrantLock 是标准库的一个类, 在 JVM 外实现 (基于 Java 实现)
  1. synchronized 是非公平锁
    ReentrantLock 默认是非公平锁, 但是提供了公平锁版本的实现
    ReentrantLock reentrantLock = new ReentrantLock(true);
  2. ReentrantLock 提供更灵活的加锁方式:
    ReentrantLock reentrantLock = new ReentrantLock(true);
    reentrantLock.tryLock();
  3. ReentrantLock 提供更强大, 更方便的等待通知机制
    synchronized 搭配 wait() notify()使用, notify() 是随机唤醒等待队列的线程
    ReentrantLock 搭配 Condition 类. 可以唤醒指定的线程

原子类

原子类内部用的是 CAS 实现, 更高效的解决了线程安全问题

原子类提供了线程安全的自增自减等操作


原子类有以下几种 :


原子类的常见方法 (以 AtomicInteger 为例)

public class Main {
    public static void main(String[] args) {
        
        Scanner scanner = new Scanner(System.in);
        int x = scanner.nextInt();

        AtomicInteger atomicInteger = new AtomicInteger(x);
        atomicInteger.getAndIncrement();// i++;
        atomicInteger.incrementAndGet();// ++i;
        atomicInteger.getAndDecrement();// i--;
        atomicInteger.decrementAndGet();// --i;
        atomicInteger.addAndGet(x);     // i+=x;
        atomicInteger.get();            // x
    }
}

线程池

之前写过, 挂个链接这里不再复制粘贴了 — https://editor.csdn.net/md/?articleId=136715895


信号量 Semaphore

信号量表示 "可用资源的个数" .本质上是一个计数器

Semaphore 提供了 P,V 操作

P 操作: 申请一个可用资源, 计数器 - 1

V 操作: 释放一个可用资源, 计数器 + 1

当可用资源个数为 0 时, 再进行 P 操作, 就会出现阻塞等待清空 (资源为零, 无法继续消耗了), 直到有线程让信号量大于零, 才会唤醒该阻塞的线程

锁 可可以视为计数器为 1 的信号量, 二元信号量

  • 锁是信号量的一种特殊情况
  • 信号量是锁的一般表达

总结: 信号量的表达含义范围更广


Semaphore 的简单使用

代码示例

public class Main {
    public static void main(String[] args) {
        // 参数是可用资源的个数(信号量的初始值)
        Semaphore semaphore = new Semaphore(4);


        for (int i=0;i<20;i++) {
            Thread t = new Thread(() -> {
                try {
                    System.out.println("申请资源");
                    semaphore.acquire();

                    System.out.println("持有资源");
                    Thread.sleep(1000);

                    System.out.println("释放资源");
                    semaphore.release();
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }

            });
            t.start();
        }
    }
}

运行结果

有兴趣可以仔细看看运行结果, 同一时刻最多只有 4个线程能够持有锁, 这就是信号量的存在意义


CountDownLatch

同时等待 N 个任务执行结束 (和 join() 功能类似)


核心API

  • await(): 阻塞等待线程, 直至任务全部完成
  • getCount(): 获取剩余未完成任务个数
  • countDown(): 未完成任务个数 -1

代码示例

public class CountDownLatchDemo {
    public static void main(String[] args) throws InterruptedException {
        // 参数代表需要等待的任务数量
        CountDownLatch countDownLatch = new CountDownLatch(5);

        for (int i = 0; i < 5; i++) {
            Thread t = new Thread(() -> {
                System.out.println("完成一个任务");
                // countDown() 方法, 代表完成一个任务
                countDownLatch.countDown();
            });

            t.start();
            Thread.sleep(1000);
        }
        // await()方法, 用于阻塞线程
        // 直至 countDownLatch 内任务全部完成, 才会往下继续走
        countDownLatch.await();
        System.out.println("任务全部完成");
    }
}

运行结果

运行过代码会发现, 每间隔一秒输出一次 “完成一个任务”, 5秒之后输出 “任务全部完成”

目录
相关文章
|
4天前
|
数据采集 负载均衡 安全
LeetCode刷题 多线程编程九则 | 1188. 设计有限阻塞队列 1242. 多线程网页爬虫 1279. 红绿灯路口
本文提供了多个多线程编程问题的解决方案,包括设计有限阻塞队列、多线程网页爬虫、红绿灯路口等,每个问题都给出了至少一种实现方法,涵盖了互斥锁、条件变量、信号量等线程同步机制的使用。
LeetCode刷题 多线程编程九则 | 1188. 设计有限阻塞队列 1242. 多线程网页爬虫 1279. 红绿灯路口
|
12天前
|
Java Spring
spring多线程实现+合理设置最大线程数和核心线程数
本文介绍了手动设置线程池时的最大线程数和核心线程数配置方法,建议根据CPU核数及程序类型(CPU密集型或IO密集型)来合理设定。对于IO密集型,核心线程数设为CPU核数的两倍;CPU密集型则设为CPU核数加一。此外,还讨论了`maxPoolSize`、`keepAliveTime`、`allowCoreThreadTimeout`和`queueCapacity`等参数的设置策略,以确保线程池高效稳定运行。
72 10
spring多线程实现+合理设置最大线程数和核心线程数
|
20天前
|
Java 数据库 Android开发
一个Android App最少有几个线程?实现多线程的方式有哪些?
本文介绍了Android多线程编程的重要性及其实现方法,涵盖了基本概念、常见线程类型(如主线程、工作线程)以及多种多线程实现方式(如`Thread`、`HandlerThread`、`Executors`、Kotlin协程等)。通过合理的多线程管理,可大幅提升应用性能和用户体验。
35 15
一个Android App最少有几个线程?实现多线程的方式有哪些?
|
19天前
|
存储 缓存 安全
【Java面试题汇总】多线程、JUC、锁篇(2023版)
线程和进程的区别、CAS的ABA问题、AQS、哪些地方使用了CAS、怎么保证线程安全、线程同步方式、synchronized的用法及原理、Lock、volatile、线程的六个状态、ThreadLocal、线程通信方式、创建方式、两种创建线程池的方法、线程池设置合适的线程数、线程安全的集合?ConcurrentHashMap、JUC
【Java面试题汇总】多线程、JUC、锁篇(2023版)
|
1月前
|
监控 Java 调度
【Java学习】多线程&JUC万字超详解
本文详细介绍了多线程的概念和三种实现方式,还有一些常见的成员方法,CPU的调动方式,多线程的生命周期,还有线程安全问题,锁和死锁的概念,以及等待唤醒机制,阻塞队列,多线程的六种状态,线程池等
102 6
【Java学习】多线程&JUC万字超详解
|
6天前
|
Python
5-5|python开启多线程入口必须在main,从python线程(而不是main线程)启动pyQt线程有什么坏处?...
5-5|python开启多线程入口必须在main,从python线程(而不是main线程)启动pyQt线程有什么坏处?...
|
22天前
|
Java 数据库 Android开发
一个Android App最少有几个线程?实现多线程的方式有哪些?
本文介绍了Android应用开发中的多线程编程,涵盖基本概念、常见实现方式及最佳实践。主要内容包括主线程与工作线程的作用、多线程的多种实现方法(如 `Thread`、`HandlerThread`、`Executors` 和 Kotlin 协程),以及如何避免内存泄漏和合理使用线程池。通过有效的多线程管理,可以显著提升应用性能和用户体验。
38 10
|
3天前
|
NoSQL 网络协议 Unix
1)Redis 属于单线程还是多线程?不同版本之间有什么区别?
1)Redis 属于单线程还是多线程?不同版本之间有什么区别?
8 0
|
4天前
|
Java 数据中心 微服务
Java高级知识:线程池隔离与信号量隔离的实战应用
在Java并发编程中,线程池隔离与信号量隔离是两种常用的资源隔离技术,它们在提高系统稳定性、防止系统过载方面发挥着重要作用。
5 0
|
4天前
|
Java
COMATE插件实现使用线程池高级并发模型简化多线程编程
本文介绍了COMATE插件的使用,该插件通过线程池实现高级并发模型,简化了多线程编程的过程,并提供了生成结果和代码参考。