基于yolov2深度学习网络的单人口罩佩戴检测和人脸定位算法matlab仿真

简介: 摘要:该内容展示了一个基于YOLOv2的单人口罩佩戴检测和人脸定位算法的应用。使用MATLAB2022A,YOLOv2通过Darknet-19网络和锚框技术检测图像中的口罩佩戴情况。核心代码段展示了如何处理图像,检测人脸并标注口罩区域。程序会实时显示检测结果,等待一段时间以优化显示流畅性。

1.算法运行效果图预览

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg
6.jpeg

2.算法运行软件版本
MATLAB2022A

3.算法理论概述
基于YOLOv2(You Only Look Once version 2)深度学习网络的单人口罩佩戴检测和人脸定位算法是一种结合了目标检测与特征识别的综合性解决方案,主要用于自动检测图像或视频中人物是否佩戴口罩以及定位人脸的位置。YOLOv2作为第二代YOLO算法,相较于初代在速度和精度上有了显著提升,它采用了一种称为“Darknet-19”的深度卷积神经网络架构,结合锚框(anchor boxes)的概念进行物体检测,并引入了批归一化、多尺度训练等技术来优化模型性能。

image.png

  在口罩检测和人脸定位任务中,YOLOv2首先需要被训练来识别“人脸”和“戴口罩的人脸”两种类别。这要求数据集包含大量标记好的样本,包括未戴口罩的人脸图像和戴口罩的人脸图像,以及人脸的精确边界框标注。

4.部分核心程序

``` I0 = imresize(img,img_size(1:2));
[bboxes2,scores2] = detect(detector2,I0,'Threshold',0.4)
if ~isempty(bboxes2) % 如果检测到目标
I = insertObjectAnnotation(I0,'rectangle',bboxes2,scores2,'Color', 'g');% 在图像上绘制检测结果
end
%根据口罩位置定位人脸
bboxes3 = [bboxes2(:,1)-10,bboxes2(:,2)-50,90,110];
I = insertObjectAnnotation(I,'rectangle',bboxes3,1,'Color', 'r');% 在图像上绘制检测结果
I = imresize(I,[R,C]);

subplot(122);
imshow(I, []);  % 显示带有检测结果的图像

pause(0.01);% 等待一小段时间,使图像显示更流畅
if cnt==1
   cnt=0;
end

end

```

相关文章
|
5天前
|
机器学习/深度学习 监控 算法
目标检测算法技术
8月更文挑战第11天
|
7天前
|
算法
基于多路径路由的全局感知网络流量分配优化算法matlab仿真
本文提出一种全局感知网络流量分配优化算法,针对现代网络中多路径路由的需求,旨在均衡分配流量、减轻拥塞并提升吞吐量。算法基于网络模型G(N, M),包含N节点与M连接,并考虑K种不同优先级的流量。通过迭代调整每种流量在各路径上的分配比例,依据带宽利用率um=Σ(xm,k * dk) / cm来优化网络性能,确保高优先级流量的有效传输同时最大化利用网络资源。算法设定收敛条件以避免陷入局部最优解。
|
14天前
|
机器学习/深度学习 监控 算法
目标检测算法
8月更文挑战第5天
|
10天前
|
机器学习/深度学习 监控 算法
目标检测算法
8月更文挑战第8天
|
11天前
|
机器学习/深度学习 监控 算法
基于深度学习网络的人员行为视频检测系统matlab仿真,带GUI界面
本仿真展示了基于GoogLeNet的人员行为检测系统在Matlab 2022a上的实现效果,无水印。GoogLeNet采用创新的Inception模块,高效地提取视频中人员行为特征并进行分类。核心程序循环读取视频帧,每十帧执行一次分类,最终输出最频繁的行为类别如“乐队”、“乒乓球”等。此技术适用于智能监控等多个领域。
28 4
|
13天前
|
机器学习/深度学习 数据采集 算法
基于深度学习网络的USB摄像头实时视频采集与火焰检测matlab仿真
本项目使用MATLAB2022a实现基于YOLOv2的火焰检测系统。通过USB摄像头捕捉火焰视频,系统实时识别并标出火焰位置。核心流程包括:视频采集、火焰检测及数据预处理(图像标准化与增强)。YOLOv2模型经特定火焰数据集训练,能快速准确地识别火焰。系统含详细中文注释与操作指南,助力快速上手。
|
5天前
|
算法
蜂窝网络下行链路的覆盖率和速率性能matlab仿真分析
此程序在MATLAB2022a环境下运行,基于随机几何模型评估蜂窝网络的下行链路覆盖率和速率性能。通过模拟不同场景下的基站(BS)配置与噪声情况,计算并绘制了各种条件下的信号干扰加噪声比(SINR)阈值与覆盖率概率的关系图。结果显示,在考虑噪声和不同基站分布模型时,覆盖率有显著差异,提出的随机模型相较于传统网格模型更为保守但也更加贴合实际基站的分布情况。
|
2天前
|
机器学习/深度学习 人工智能 自然语言处理
【深度学习】Python之人工智能应用篇——音频生成技术
音频生成是指根据所输入的数据合成对应的声音波形的过程,主要包括根据文本合成语音(text-to-speech)、进行不同语言之间的语音转换、根据视觉内容(图像或视频)进行语音描述,以及生成旋律、音乐等。它涵盖了声音结构中的音素、音节、音位、语素等基本单位的预测和组合,通过频谱逼近或波形逼近的合成策略来实现音频的生成。 音频生成技术的发展主要依赖于深度学习模型,如循环神经网络(RNN)、长短时记忆网络(LSTM)、Transformer等。这些模型通过学习大量的音频数据,能够自动生成与人类发音相似甚至超越人类水平的音频内容。近年来,随着大规模预训练模型的流行,如GPT系列模型、BERT、T5等,
12 7
【深度学习】Python之人工智能应用篇——音频生成技术
|
2天前
|
机器学习/深度学习 人工智能 算法
【深度学习】python之人工智能应用篇——图像生成技术(二)
图像生成是计算机视觉和计算机图形学领域的一个重要研究方向,它指的是通过计算机算法和技术生成或合成图像的过程。随着深度学习、生成模型等技术的发展,图像生成领域取得了显著的进步,并在多个应用场景中发挥着重要作用。
15 9
|
2天前
|
机器学习/深度学习 人工智能 自然语言处理
【深度学习】深度学习的概述及应用,附带代码示例
深度学习(Deep Learning,简称DL)是机器学习领域中的一个重要分支,其目标是通过模拟人脑神经网络的工作机制,构建多层次的抽象特征表示,使机器能够自动从原始数据中提取关键信息,从而实现高精度的任务执行。深度学习通过多层神经网络结构及其训练方式,实现了从低级像素级别到高级概念级别的递进式知识层次。 深度学习的主要组件包括输入层、隐藏层和输出层。隐藏层的数量和层数决定了模型的复杂度和表达能力。在训练过程中,权重更新和梯度下降法是关键步骤,目的是最小化损失函数,提高预测精度。深度学习主要基于反向传播算法(BP Algorithm)来优化模型参数,通过正向传播、损失计算、反向传播和梯度下降等
20 8

热门文章

最新文章