阿里云PAI发布DeepRec Extension,打造稳定高效的分布式训练,并宣布开源!

本文涉及的产品
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
简介: 阿里云人工智能平台PAI正式发布自研的 DeepRec Extension(即 DeepRec 扩展),旨在以更低成本,更高效率进行稀疏模型的分布式训练。

近日,阿里云人工智能平台PAI正式发布自研的 DeepRec Extension即 DeepRec 扩展)旨在以更低成本,更高效率进行稀疏模型的分布式训练DeepRec Extension 在 DeepRec 训练推理框架之上,围绕大规模稀疏模型分布式训练,创新性地从训练任务的视角提出了自动弹性训练和分布式容错功能,进一步提升稀疏模型训练的整体效率,助力 DeepRec 引擎在稀疏场景中发挥更大的优势。

DeepRec Extension开源地址:https://github.com/DeepRec-AI/extension

DeepRec Extension 有效地解决了企业级场景大规模稀疏模型训练中的难点随着业务发展,模型尺寸增长到百 GB / TB 量级,分布式训练往往会遇到分布式建模接口复杂、资源预估困难且无法弹性、分布式容错机制过于简单和分布式环境复杂等问题,阻碍大尺寸模型高效、稳定地完成训练。DeepRec Extension 提供易用、高效、高性价比的框架,使得模型能够便捷地在分布式环境中运行,切实解决上述问题

image.png

DeepRec Extension 设计思路及整体架构

DeepRec Extension 推出分布式训练资源预估、自动弹性训练、资源/计算图监控、自动备份容错等功能,有效降低了大规模稀疏模型训练的技术门槛和成本,同时提升了分布式训练的效率和稳定性。DeepRec Extension 简化分布式训练的工作流程,保障用户聚焦于模型的构建阶段,更加专注于模型本身的创新与优化,无需关注繁琐的底层架构配置。在性能提升方面,资源预估以及自动弹性训练为用户节约 20% ~ 60% 资源,在稳定性方面,PS 发生异常后,模型 E2E 训练吞吐提升 10%。

一直以来,大规模稀疏模型分布式训练是备受关注的话题,阿里云人工智能平台PAI正式将 DeepRec Extension 开源,与AI开发者共同打造更快更好的分布式训练框架,全面助力AI大模型发展!

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
11天前
|
人工智能 监控 开发者
阿里云PAI发布DeepRec Extension,打造稳定高效的分布式训练,并宣布开源!
阿里云PAI发布DeepRec Extension,打造稳定高效的分布式训练,并宣布开源!
|
2月前
|
机器学习/深度学习 人工智能
Diff-Instruct:指导任意生成模型训练的通用框架,无需额外训练数据即可提升生成质量
Diff-Instruct 是一种从预训练扩散模型中迁移知识的通用框架,通过最小化积分Kullback-Leibler散度,指导其他生成模型的训练,提升生成性能。
86 11
Diff-Instruct:指导任意生成模型训练的通用框架,无需额外训练数据即可提升生成质量
|
2月前
如何看PAI产品下训练(train)模型任务的费用细节
PAI产品下训练(train)模型任务的费用细节
99 6
|
4月前
|
人工智能 JSON 算法
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
阿里云的人工智能平台 PAI,作为一站式、 AI Native 的大模型与 AIGC 工程平台,为开发者和企业客户提供了 Qwen2.5-Coder 系列模型的全链路最佳实践。本文以Qwen2.5-Coder-32B为例,详细介绍在 PAI-QuickStart 完成 Qwen2.5-Coder 的训练、评测和快速部署。
Qwen2.5-Coder 系列模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
|
3月前
|
机器学习/深度学习 存储 运维
分布式机器学习系统:设计原理、优化策略与实践经验
本文详细探讨了分布式机器学习系统的发展现状与挑战,重点分析了数据并行、模型并行等核心训练范式,以及参数服务器、优化器等关键组件的设计与实现。文章还深入讨论了混合精度训练、梯度累积、ZeRO优化器等高级特性,旨在提供一套全面的技术解决方案,以应对超大规模模型训练中的计算、存储及通信挑战。
164 4
|
4月前
|
人工智能 边缘计算 JSON
DistilQwen2 蒸馏小模型在 PAI-QuickStart 的训练、评测、压缩及部署实践
本文详细介绍在 PAI 平台使用 DistilQwen2 蒸馏小模型的全链路最佳实践。
|
4月前
|
机器学习/深度学习 分布式计算 算法
【大数据分析&机器学习】分布式机器学习
本文主要介绍分布式机器学习基础知识,并介绍主流的分布式机器学习框架,结合实例介绍一些机器学习算法。
664 5
|
20天前
|
NoSQL Java 中间件
【📕分布式锁通关指南 02】基于Redis实现的分布式锁
本文介绍了从单机锁到分布式锁的演变,重点探讨了使用Redis实现分布式锁的方法。分布式锁用于控制分布式系统中多个实例对共享资源的同步访问,需满足互斥性、可重入性、锁超时防死锁和锁释放正确防误删等特性。文章通过具体示例展示了如何利用Redis的`setnx`命令实现加锁,并分析了简化版分布式锁存在的问题,如锁超时和误删。为了解决这些问题,文中提出了设置锁过期时间和在解锁前验证持有锁的线程身份的优化方案。最后指出,尽管当前设计已解决部分问题,但仍存在进一步优化的空间,将在后续章节继续探讨。
463 131
【📕分布式锁通关指南 02】基于Redis实现的分布式锁
|
23天前
|
NoSQL Java Redis
Springboot使用Redis实现分布式锁
通过这些步骤和示例,您可以系统地了解如何在Spring Boot中使用Redis实现分布式锁,并在实际项目中应用。希望这些内容对您的学习和工作有所帮助。
153 83
|
5月前
|
NoSQL Java Redis
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
Redis分布式锁在高并发场景下是重要的技术手段,但其实现过程中常遇到五大深坑:**原子性问题**、**连接耗尽问题**、**锁过期问题**、**锁失效问题**以及**锁分段问题**。这些问题不仅影响系统的稳定性和性能,还可能导致数据不一致。尼恩在实际项目中总结了这些坑,并提供了详细的解决方案,包括使用Lua脚本保证原子性、设置合理的锁过期时间和使用看门狗机制、以及通过锁分段提升性能。这些经验和技巧对面试和实际开发都有很大帮助,值得深入学习和实践。
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?

相关产品

  • 人工智能平台 PAI