Hive 解析 JSON 字符串数据的实现方式

简介: Hive 提供 `get_json_object` 函数解析 JSON 字符串,如 `{"database":"maxwell"}`。`path` 参数使用 `$`、`.`、`[]` 和 `*` 来提取数据。示例中展示了如何解析复杂 JSON 并存储到表中。此外,Hive 3.0.0及以上版本内置 `JsonSerDe` 支持直接处理 JSON 文件,无需手动解析。创建表时指定 `JsonSerDe` 序列化器,并在 HDFS 上存放 JSON 文件,可以直接查询字段内容,方便快捷。

@[toc]

通过方法解析现实

在 Hive 中提供了直接解析 JSON 字符串数据的方法 get_json_object(json_txt, path),该方法参数解析如下:

  1. json_txt:顾名思义,就是 JSON 字符串;

  2. path:指的是匹配 JSON 字符串的格式,通过固定的语法获取 JSON 字符串中的内容。

常用的 path 参数匹配符号有四个,分别是:

  • $:表示获取整个 JSON 文件的根;
  • .:表示获取子元素;
  • []:表示获取列表;

  • *:表示获取列表中的元素。

示例

当前有一条 Maxwell 采集的 JSON 字符串数据,如下所示:

{
   
   "database":"maxwell","table":"bootstrap","type":"insert","ts":1683629964,"xid":395746,"commit":true,"data":{
   
   "id":8,"database_name":"school","table_name":"test2","where_clause":null,"is_complete":0,"inserted_rows":0,"total_rows":0,"created_at":null,"started_at":null,"completed_at":null,"binlog_file":null,"binlog_position":0,"client_id":"maxwell","comment":null}}

下面在 Hive 中对其进行解析,为了方便解析,先将其存储到测试表中:

drop table if exists json_test;
create table json_test(json_txt string);
insert into json_test values('{"database":"maxwell","table":"bootstrap","type":"insert","ts":1683629964,"xid":395746,"commit":true,"data":{"id":8,"database_name":"school","table_name":"test2","where_clause":null,"is_complete":0,"inserted_rows":0,"total_rows":0,"created_at":null,"started_at":null,"completed_at":null,"binlog_file":null,"binlog_position":0,"client_id":"maxwell","comment":null}}');

-- 下面开始解析 JSON 字符串
select
    -- 先获取根然后再获取子元素
    get_json_object(json_txt,"$.database") `database`,
    get_json_object(json_txt,"$.table") `table`,
    get_json_object(json_txt,"$.type") `type`,
    get_json_object(json_txt,"$.ts") ts,
    get_json_object(json_txt,"$.xid") xid,

    -- 获取多级关系的内容就嵌套使用
    get_json_object(json_txt,"$.data.id") id,
    get_json_object(json_txt,"$.data.database_name") database_name,
    get_json_object(json_txt,"$.data.table_name") table_name
from
    json_test;

查询结果如下:

image.png

通过序列化实现

在 Hive 3.0.0 及以上版本中(在低版本中需要通过添加 Jar 包实现),内置了序列化 JSON 内容数据的包 JsonSerDe,在建表时指定序列化的格式,使用过程中就可以直接获取到 JSON 文件中的内容,无需进行手动解析操作。

hive-site.xml 文件中指定 Hive 表的序列化与反序列化器 SerDe

<property>
    <name>metastore.storage.schema.reader.impl</name>
    <value>org.apache.hadoop.hive.metastore.SerDeStorageSchemaReader</value>
</property>

添加完成后重启 Hive 服务,例如元数据库 metastore 或者 hiveserver2 远程连接。

示例

我们先进入 HDFS 上创建一个 JSON 目录文件,存储一条 JSON 数据用于测试:

{
   
   "database":"maxwell","table":"bootstrap","type":"insert","ts":1683629964,"xid":395746,"commit":true,"data":{
   
   "id":8,"database_name":"school","table_name":"test2","where_clause":null,"is_complete":0,"inserted_rows":0,"total_rows":0,"created_at":null,"started_at":null,"completed_at":null,"binlog_file":null,"binlog_position":0,"client_id":"maxwell","comment":null}}

注意:文件中存储的 JSON 串必须是一行一条,不能手动跨越多行,不能格式化后存储,否则会引起 SerDe 解析异常:

java.io.IOException: org.apache.hadoop.hive.serde2.SerDeException: org.codehaus.jackson.JsonParseException: Unexpected end-of-input: expected close marker for OBJECT (from [Source: java.io.ByteArrayInputStream@73c91482; line: 1, column: 0])

这里在 HDFS 上创建了目录 /json_dir,其中存储了 JSON 文件 json_file.txt

image.png

下面在 Hive 中创建表并对其进行解析:

drop table if exists json_test;
-- 其中定义的字段名对应 JSON 文件中的 KEY
-- 如果存在嵌套 JSON 子串,则需要使用结构体来进行定义
create table json_test(
    `database` string,
    `table` string,
    `type` string,
    `ts` string,
    `xid` bigint,
    `commit` string,
    `data` struct<id:bigint,database_name:string,table_name:string>)
row format serde 'org.apache.hadoop.hive.serde2.JsonSerDe'
stored as textfile
location '/json_dir'; -- 指定 JSON 文件的存储目录

查询字段内容:

select * from json_test;

image.png

如果想要获取嵌套 JSON 子串中的内容也很简单,如下所示:

select
    data.id,
    data.database_name,
    data.table_name
from json_test;

image.png

序列化与反序列解析 JSON 文件实战用的更多,更加方便快捷。

相关文章
|
10月前
|
数据采集 JSON 数据可视化
JSON数据解析实战:从嵌套结构到结构化表格
在信息爆炸的时代,从杂乱数据中提取精准知识图谱是数据侦探的挑战。本文以Google Scholar为例,解析嵌套JSON数据,提取文献信息并转换为结构化表格,通过Graphviz制作技术关系图谱,揭示文献间的隐秘联系。代码涵盖代理IP、请求头设置、JSON解析及可视化,提供完整实战案例。
659 4
JSON数据解析实战:从嵌套结构到结构化表格
|
JSON 前端开发 搜索推荐
关于商品详情 API 接口 JSON 格式返回数据解析的示例
本文介绍商品详情API接口返回的JSON数据解析。最外层为`product`对象,包含商品基本信息(如id、name、price)、分类信息(category)、图片(images)、属性(attributes)、用户评价(reviews)、库存(stock)和卖家信息(seller)。每个字段详细描述了商品的不同方面,帮助开发者准确提取和展示数据。具体结构和字段含义需结合实际业务需求和API文档理解。
|
JSON 小程序 UED
微信小程序 app.json 配置文件解析与应用
本文介绍了微信小程序中 `app.json` 配置文件的详细
1823 12
|
JSON 缓存 API
解析电商商品详情API接口系列,json数据示例参考
电商商品详情API接口是电商平台的重要组成部分,提供了商品的详细信息,支持用户进行商品浏览和购买决策。通过合理的API设计和优化,可以提升系统性能和用户体验。希望本文的解析和示例能够为开发者提供参考,帮助构建高效、可靠的电商系统。
482 12
|
JSON JavaScript 前端开发
一次采集JSON解析错误的修复
两段采集来的JSON格式数据存在格式问题,直接使用PHP的`json_decode`会报错。解决思路包括:1) 手动格式化并逐行排查错误;2) 使用PHP-V8JS扩展在JavaScript环境中解析。具体方案一是通过正则表达式和字符串替换修复格式,方案二是利用V8Js引擎执行JS代码并返回JSON字符串,最终实现正确解析。 简介: 两段采集的JSON数据因掺杂JavaScript代码导致PHP解析失败。解决方案包括手动格式化修复和使用PHP-V8JS扩展在JavaScript环境中解析,确保JSON数据能被正确处理。
|
7月前
|
JSON 定位技术 PHP
PHP技巧:解析JSON及提取数据
这就是在PHP世界里探索JSON数据的艺术。这场狩猎不仅仅是为了获得数据,而是一种透彻理解数据结构的行动,让数据在你的编码海洋中畅游。通过这次冒险,你已经掌握了打开数据宝箱的钥匙。紧握它,让你在编程世界中随心所欲地航行。
254 67
|
JSON JavaScript 测试技术
掌握JMeter:深入解析如何提取和利用JSON数据
Apache JMeter教程展示了如何提取和使用JSON数据。创建测试计划,包括HTTP请求和JSON Extractor,设置变量前缀和JSON路径表达式来提取数据。通过Debug Sampler和View Results Tree监听器验证提取结果,然后在后续请求和断言中使用这些数据。此方法适用于复杂测试场景,提升性能和自动化测试效率。
|
存储 JSON API
淘系API接口(解析返回的json数据)商品详情数据解析助力开发者
——在成长的路上,我们都是同行者。这篇关于商品详情API接口的文章,希望能帮助到您。期待与您继续分享更多API接口的知识,请记得关注Anzexi58哦! 淘宝API接口(如淘宝开放平台提供的API)允许开发者获取淘宝商品的各种信息,包括商品详情。然而,需要注意的是,直接访问淘宝的商品数据API通常需要商家身份或开发者权限,并且需要遵循淘宝的API使用协议。
淘系API接口(解析返回的json数据)商品详情数据解析助力开发者
|
JSON JavaScript API
商品详情数据接口解析返回的JSON数据(API接口整套流程)
商品详情数据接口解析返回的JSON数据是API接口使用中的一个重要环节,它涉及从发送请求到接收并处理响应的整个流程。以下是一个完整的API接口使用流程,包括如何解析返回的JSON数据:
|
JSON 前端开发 API
【淘系】商品详情属性解析(属性规格详情图sku等json数据示例返回参考),淘系API接口系列
在淘宝(或天猫)平台上,商品详情属性(如属性规格、详情图、SKU等)是商家在发布商品时设置的,用于描述商品的详细信息和不同规格选项。这些信息对于消费者了解商品特性、进行购买决策至关重要。然而,直接通过前端页面获取这些信息的结构化数据(如JSON格式)并非直接暴露给普通用户或开发者,因为这涉及到平台的商业机密和数据安全。 不过,淘宝平台提供了丰富的API接口(如淘宝开放平台API),允许有资质的开发者或合作伙伴通过编程方式获取商品信息。这些API接口通常需要注册开发者账号、申请应用密钥(App Key)和秘钥(App Secret),并遵守淘宝的API使用协议。

推荐镜像

更多
  • DNS