m基于GA-GRU遗传优化门控循环单元网络的电力负荷数据预测算法matlab仿真

简介: 在MATLAB 2022a中,一个基于遗传算法优化的GRU网络展示显著优化效果。优化前后的电力负荷预测图表显示了改进的预测准确性和效率。GRU,作为RNN的一种形式,解决了长期依赖问题,而遗传算法用于优化其超参数,如学习率和隐藏层单元数。核心MATLAB程序执行超过30分钟,通过迭代和适应度评估寻找最佳超参数,最终构建优化的GRU模型进行负荷预测,结果显示预测误差和模型性能的提升。

1.算法仿真效果
matlab2022a仿真结果如下:

优化前:

image.png
image.png

优化后:

image.png
image.png

对比:

image.png

2.算法涉及理论知识概要
基于遗传算法(Genetic Algorithm, GA)优化的长门控循环单元(Gated Recurrent Unit, GRU)网络,是一种结合了进化计算与深度学习的混合预测模型,特别适用于电力负荷这类具有明显时间序列特性和复杂非线性特征的数据预测。

image.png

   GRU是循环神经网络(RNN)的一种变体,旨在解决长期依赖问题。相比传统的LSTM,GRU通过合并遗忘门和输入门为单一的更新门,减少了一个控制门,降低了模型的复杂度,同时保持了较好的学习长期依赖的能力。

image.png

   在电力负荷预测中,GA用于优化GRU网络的超参数,如学习率、隐藏层单元数、网络层数等,以获得最佳预测性能。具体流程如下:

定义问题:将GRU网络的超参数作为遗传算法的染色体,目标是最小化预测误差。

编码与初始化:将超参数编码为染色体,初始化种群。

适应度评估:使用历史电力负荷数据训练不同的GRU模型(基于当前种群中的不同超参数配置),计算预测误差作为适应度值。

遗传操作:基于适应度值进行选择、交叉和变异,生成新的超参数配置。

终止条件:当达到预定的迭代次数或适应度改善不明显时,停止进化,选择适应度最高的超参数配置。

模型训练与预测:使用优化后的超参数配置训练GRU模型,并进行电力负荷预测。

3.MATLAB核心程序

MAXGEN = 50;
NIND   = 20;
Nums   = 1; 
Chrom  = crtbp(NIND,Nums*10);

%sh
Areas = [];
for i = 1:1
    Areas = [Areas,[1;100]];% 目标范围0到4,如果是0,则表明该位置不安装充电桩
end

FieldD = [rep([10],[1,Nums]);Areas;rep([0;0;0;0],[1,Nums])];

gen   = 0;
Js    = 0.5*rand(NIND,1);
Objv  = (Js+eps);
gen   = 0; 



while gen < MAXGEN
      gen
      Pe0 = 0.999;
      pe1 = 0.001; 

      FitnV=ranking(Objv);    
      Selch=select('sus',Chrom,FitnV);    
      Selch=recombin('xovsp', Selch,Pe0);   
      Selch=mut( Selch,pe1);   
      phen1=bs2rv(Selch,FieldD);   

      for a=1:1:NIND  
          X           = phen1(a);
          %计算对应的目标值
          [epls]      = func_obj(X);
          E           = epls;
          JJ(a,1)     = E;
      end 

      Objvsel=(JJ);    
      [Chrom,Objv]=reins(Chrom,Selch,1,1,Objv,Objvsel);   
      gen=gen+1; 


      Error2(gen) = mean(JJ);
end 
figure
plot(smooth(Error2,MAXGEN),'linewidth',2);
grid on
xlabel('迭代次数');
ylabel('遗传算法优化过程');
legend('Average fitness');

[V,I] = min(JJ);
X     = phen1(I);


numFeatures    = 2;
numResponses   = 1;
numHiddenUnits = round(X);% 定义隐藏层中LSTM单元的数量
layers = [ ...% 定义网络层结构
    sequenceInputLayer(numFeatures) 
    gruLayer(numHiddenUnits)
    dropoutLayer(0.1) 
    gruLayer(2*numHiddenUnits)
    dropoutLayer(0.1)
    fullyConnectedLayer(numResponses)
    regressionLayer
    ];

ypred = predict(net,[P],'MiniBatchSize',1);


figure;
subplot(211);
plot(T)
hold on
plot(ypred)
xlabel('days');
ylabel('负荷');
legend('实际负荷','GRU预测负荷');
subplot(212);
plot(T-ypred)
xlabel('days');
ylabel('GRU误差');

save R2.mat T ypred
相关文章
|
3月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
395 0
|
3月前
|
5G
基于IEEE 802.11a标准的物理层MATLAB仿真
基于IEEE 802.11a标准的物理层MATLAB仿真
251 0
|
3月前
|
算法
基于MATLAB/Simulink平台搭建同步电机、异步电机和双馈风机仿真模型
基于MATLAB/Simulink平台搭建同步电机、异步电机和双馈风机仿真模型
|
3月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
210 8
|
3月前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
228 8
|
3月前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
3月前
|
机器学习/深度学习 数据采集 负载均衡
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
结合多种启发式解码方法的混合多目标进化算法,用于解决带工人约束的混合流水车间调度问题(Matlab代码实现)
206 0
|
3月前
|
机器学习/深度学习 人工智能 算法
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
【基于TTNRBO优化DBN回归预测】基于瞬态三角牛顿-拉夫逊优化算法(TTNRBO)优化深度信念网络(DBN)数据回归预测研究(Matlab代码实现)
193 0
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
304 17
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
248 10

热门文章

最新文章