基于BP神经网络的16QAM解调算法matlab性能仿真

简介: 这是一个关于使用MATLAB2022a实现的16QAM解调算法的摘要。该算法基于BP神经网络,利用其非线性映射和学习能力从复数信号中估计16QAM符号,具有良好的抗噪性能。算法包括训练和测试两个阶段,通过反向传播调整网络参数以减小输出误差。核心程序涉及数据加载、可视化以及神经网络训练,评估指标为误码率(BER)和符号错误率(SER)。代码中还包含了星座图的绘制和训练曲线的展示。

1.算法运行效果图预览

1.jpeg
2.jpeg
3.jpeg

2.算法运行软件版本
MATLAB2022a

3.算法理论概述
16QAM(Quadrature Amplitude Modulation,正交幅度调制)是一种高效的数字调制技术,能够在相同的带宽内传输比传统调制方式更多的信息。解调是通信系统中从接收到的信号中恢复原始信息的关键步骤。基于BP(Back Propagation,反向传播)神经网络的16QAM解调算法,是利用人工神经网络强大的非线性映射和学习能力,直接从接收到的复数信号中估计出发送的16QAM符号,具有良好的抗噪性能和灵活性。

  BP神经网络是一种多层前馈网络,它包括输入层、隐藏层和输出层。在解调16QAM信号的应用中,输入层接收接收到的复数信号样本,输出层则输出对应的最可能的16QAM符号估计。训练过程中,通过调整网络权重和偏置,使得网络输出尽可能接近实际的符号标签,以此达到解调的目的。

image.png

  训练阶段:利用大量已知的16QAM符号及其对应的接收信号样本,通过反向传播算法不断调整网络参数,直至网络输出误差收敛到一个可接受的范围。

  测试阶段:在训练完成后,将未参与训练的测试集信号输入网络,评估网络的解调性能,包括误码率(BER)、符号错误率(SER)等指标。

4.部分核心程序

```% 第一部分:加载并可视化数据

real1 = [-3 -3 -3 -3 -1 -1 -1 -1 +3 +3 +3 +3 +1 +1 +1 +1]./sqrt(10);
imag1 = [-3 -1 +3 +1 -3 -1 +3 +1 -3 -1 +3 +1 -3 -1 +3 +1]./sqrt(10);

IQmap = real1'+sqrt(-1)*imag1';

for ij = 1:length(SNR)
ij
for j = 1:20
signal= round(rand(1,60000));
Stx = Modulator(signal,K);
Srx = awgn(Stx,SNR(ij),'measured');
..................................................................

    %为每个神经网络寻找最佳超参数组合
    [accuracy,yfit] = func_ANN_qpsk(Si, Sh, Nlabel, lambda, IQmap, SrxT, StxT, SrxV, StxV);
    err(ij,j)=1-accuracy/100;
end

end

% 调用函数绘制星座图,展示数据的10%
func_constellation(Srx,Stx,0.5)

figure;
semilogy(SNR,mean(err,2),'b-o');
grid on
xlabel('SNR');
ylabel('误码率');
legend('16QAM误码率');

figure
plot(yfit,'-r>',...
'LineWidth',1,...
'MarkerSize',6,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[0.9,0.9,0.0]);
xlabel('训练迭代次数');
ylabel('神经网络训练曲线');

```

相关文章
|
4月前
|
机器学习/深度学习 算法 调度
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
447 0
|
4月前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
335 2
|
3月前
|
机器学习/深度学习 数据采集 存储
概率神经网络的分类预测--基于PNN的变压器故障诊断(Matlab代码实现)
概率神经网络的分类预测--基于PNN的变压器故障诊断(Matlab代码实现)
406 0
|
4月前
|
机器学习/深度学习 并行计算 算法
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
120 8
|
SQL 监控 安全
网络安全与信息安全:漏洞、加密与安全意识
随着互联网的迅猛发展,网络安全和信息安全问题日益受到关注。本文深入探讨了网络安全漏洞、加密技术以及提高个人和组织的安全意识的重要性。通过分析常见的网络攻击手段如缓冲区溢出、SQL注入等,揭示了计算机系统中存在的缺陷及其潜在威胁。同时,详细介绍了对称加密和非对称加密算法的原理及应用场景,强调了数字签名和数字证书在验证信息完整性中的关键作用。此外,还讨论了培养良好上网习惯、定期备份数据等提升安全意识的方法,旨在帮助读者更好地理解和应对复杂的网络安全挑战。
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
305 17
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
250 10
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,并提供一些实用的代码示例。通过阅读本文,您将了解到如何保护自己的网络安全,以及如何提高自己的信息安全意识。
259 10
|
监控 安全 网络安全
网络安全与信息安全:漏洞、加密与意识的交织
在数字时代的浪潮中,网络安全与信息安全成为维护数据完整性、保密性和可用性的关键。本文深入探讨了网络安全中的漏洞概念、加密技术的应用以及提升安全意识的重要性。通过实际案例分析,揭示了网络攻击的常见模式和防御策略,强调了教育和技术并重的安全理念。旨在为读者提供一套全面的网络安全知识框架,从而在日益复杂的网络环境中保护个人和组织的资产安全。

热门文章

最新文章