Flink API的4个层次

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
简介: 【5月更文挑战第24天】Flink的API分为四个层次:核心底层API、核心开发API(DataStream/DataSet API)、声明式DSL API和结构化API。

从纵向来看Flink中的API分为4个层次,从下而上,API层次越高,抽象程度越高,使用起来越方便,灵活性则会降低。

1、核心底层API

核心底层API提供了Flink的最底层的分布式计算构建块的操作API,包含了ProcessFunction、状态、时间和窗口等操作的API。


ProcessFunction是Flink提供的最具表现力的底层功能接口。Flink提供单流输入的ProcessFunction和双流输入的CoProcessFunction,能够对单个事件进行计算,也能够按照窗口对时间进行计算。

ProcessFunction提供对时间和状态的细粒度控制能力,它可以处理事件时间和处理时间两种时间概念,在时间上定义、修改触发回调函数的触发器。因此,ProcessFunction可以实现许多有状态计算中的复杂业务逻辑。


2、核心开发API (DataStream/DataSet API)

DataStream/DataSet使用Fluent风格API,提供了常见数据处理的API接口,如用户指定的各种转换形式,包括连接(Join)、聚合(Aggregation)、窗口(Window)、状态(State)等。在这些API中处理的数据类型以各自的编程语言定义为Class类(Java类或者Scala类)。同时为了提供灵活性,DataStream/DataSet中也提供了直接使用底层ProcessFunction的能力,使得一些特定的操作可以实现更低层次的抽象如DataSet API为有界数据集提供了额外的原函数(如循环/迭代)。


3、声明式DSL API

Table API是以表为中心的声明式领域专用语言(Domain Specified Language,DSL)。表是关系型数据库的概念,用在批处理中。


Table API遵循(扩展)关系模型,使用Schema定义元数据(与关系数据库中的表相似),提供Table API实现SQL操作,如select、project、join、group-by、aggregate等。Table API表达的是“应该做什么”的逻辑操作,而不是编写如何处理数据的底层代码。


此外,Table API程序还可以通过在执行之前使用SQL优化器进行优化。可以在表和DataStream/DataSet之间无缝转换,允许程序中混合使用Table API和DataStream/DataSet API。

4、结构化API

SQL是Flink的结构化API,是最高层次的计算API,与Table API基本等价,区别在于使用的方式。SQL与Table API可以混合使用,SQL可以操作Table API定义的表,Table API也能操作SQL定义的表和中间结果。


SQL对复杂逻辑的语义表达不如DataStream API,但是SQL也带来了不少好处。

  • 缩短上线周期

传统的实现流计算的方式是通过流计算平台提供的API进行编程的,包括确定需求、实现设计、编写代码、进行本地单元测试、进行集成测试,没有问题后部署上线等流程。整个开发过程中,开发人员不光要满足业务需求,还需要关注技术实现的细节,而使用SQL的方式后,开发人员只要关注业务需求即可,技术实现的细节可以交给SQL引擎去解析、编译、优化。最终,相比传统的通过编码实现流计算的方式,上线周期可以从数天缩短为数小时。

  • 更好地支持流计算需求的演变

随着业务需求持续不断的变化,编码方式的开发、测试、部署上线的周期不能很快的响应业务需求的变化,使用SQL则能够缩短开发、测试、部署的周期。

  • 自动调优

查询优化器可以为用户的SQL生成最高效的执行计划。用户不需要了解它就能自动享受优化器带来的性能提升。

  • 接口稳定

SQL拥有几十年的历史,是一个非常稳定的语言,很少有变动。所以升级引擎的版本、甚至替换成另一个引擎时,都可以做到兼容并且平滑地升级。

  • 易于理解

SQL的学习门槛很低,很多不同行业不同领域的人都懂SQL,用SQL作为跨团队的开发语言可以大大提高效率。


在Flink1.9及以后的版本中,Flink会在API层面上统一DataStream流处理API和DataSet批处理API,DataSet API会逐渐被废弃,未来会使用DataStream API统一表达流批两种处理,作为流批统一的计算引擎,这种做法是合理的。

相关实践学习
基于Hologres+Flink搭建GitHub实时数据大屏
通过使用Flink、Hologres构建实时数仓,并通过Hologres对接BI分析工具(以DataV为例),实现海量数据实时分析.
实时计算 Flink 实战课程
如何使用实时计算 Flink 搞定数据处理难题?实时计算 Flink 极客训练营产品、技术专家齐上阵,从开源 Flink功能介绍到实时计算 Flink 优势详解,现场实操,5天即可上手! 欢迎开通实时计算 Flink 版: https://cn.aliyun.com/product/bigdata/sc Flink Forward Asia 介绍: Flink Forward 是由 Apache 官方授权,Apache Flink Community China 支持的会议,通过参会不仅可以了解到 Flink 社区的最新动态和发展计划,还可以了解到国内外一线大厂围绕 Flink 生态的生产实践经验,是 Flink 开发者和使用者不可错过的盛会。 去年经过品牌升级后的 Flink Forward Asia 吸引了超过2000人线下参与,一举成为国内最大的 Apache 顶级项目会议。结合2020年的特殊情况,Flink Forward Asia 2020 将在12月26日以线上峰会的形式与大家见面。
相关文章
|
9月前
|
SQL 人工智能 关系型数据库
Flink CDC YAML:面向数据集成的 API 设计
本文整理自阿里云智能集团 Flink PMC Member & Committer 徐榜江(雪尽)在 FFA 2024 分论坛的分享,涵盖四大主题:Flink CDC、YAML API、Transform + AI 和 Community。文章详细介绍了 Flink CDC 的发展历程及其优势,特别是 YAML API 的设计与实现,以及如何通过 Transform 和 AI 模型集成提升数据处理能力。最后,分享了社区动态和未来规划,欢迎更多开发者加入开源社区,共同推动 Flink CDC 的发展。
701 12
Flink CDC YAML:面向数据集成的 API 设计
|
8月前
|
SQL 人工智能 关系型数据库
Flink CDC YAML:面向数据集成的 API 设计
Flink CDC YAML:面向数据集成的 API 设计
332 5
|
SQL 分布式计算 测试技术
概述Flink API中的4个层次
【7月更文挑战第14天】Flink的API分为4个层次:核心底层API(如ProcessFunction)、DataStream/DataSet API、Table API和SQL。
|
Kubernetes Oracle 关系型数据库
实时计算 Flink版操作报错合集之用dinky在k8s上提交作业,会报错:Caused by: org.apache.flink.table.api.ValidationException:,是什么原因
在使用实时计算Flink版过程中,可能会遇到各种错误,了解这些错误的原因及解决方法对于高效排错至关重要。针对具体问题,查看Flink的日志是关键,它们通常会提供更详细的错误信息和堆栈跟踪,有助于定位问题。此外,Flink社区文档和官方论坛也是寻求帮助的好去处。以下是一些常见的操作报错及其可能的原因与解决策略。
493 0
|
1月前
|
缓存 监控 前端开发
顺企网 API 开发实战:搜索 / 详情接口从 0 到 1 落地(附 Elasticsearch 优化 + 错误速查)
企业API开发常陷参数、缓存、错误处理三大坑?本指南拆解顺企网双接口全流程,涵盖搜索优化、签名验证、限流应对,附可复用代码与错误速查表,助你2小时高效搞定开发,提升响应速度与稳定性。
|
1月前
|
JSON 算法 API
Python采集淘宝商品评论API接口及JSON数据返回全程指南
Python采集淘宝商品评论API接口及JSON数据返回全程指南
|
2月前
|
数据可视化 测试技术 API
从接口性能到稳定性:这些API调试工具,让你的开发过程事半功倍
在软件开发中,接口调试与测试对接口性能、稳定性、准确性及团队协作至关重要。随着开发节奏加快,传统方式已难满足需求,专业API工具成为首选。本文介绍了Apifox、Postman、YApi、SoapUI、JMeter、Swagger等主流工具,对比其功能与适用场景,并推荐Apifox作为集成度高、支持中文、可视化强的一体化解决方案,助力提升API开发与测试效率。
|
1月前
|
JSON API 数据安全/隐私保护
Python采集淘宝拍立淘按图搜索API接口及JSON数据返回全流程指南
通过以上流程,可实现淘宝拍立淘按图搜索的完整调用链路,并获取结构化的JSON商品数据,支撑电商比价、智能推荐等业务场景。
|
30天前
|
人工智能 自然语言处理 测试技术
Apipost智能搜索:只需用业务语言描述需求,就能精准定位目标接口,API 搜索的下一代形态!
在大型项目中,API 数量庞大、命名不一,导致“找接口”耗时费力。传统工具依赖关键词搜索,难以应对语义模糊或命名不规范的场景。Apipost AI 智能搜索功能,支持自然语言查询,如“和用户登录有关的接口”,系统可理解语义并精准匹配目标接口。无论是新人上手、模糊查找还是批量定位,都能大幅提升检索效率,降低协作成本。从关键词到语义理解,智能搜索让开发者少花时间找接口,多专注核心开发,真正实现高效协作。
|
2月前
|
JSON 前端开发 API
如何调用体育数据足篮接口API
本文介绍如何调用体育数据API:首先选择可靠服务商并注册获取密钥,接着阅读文档了解基础URL、端点、参数及请求头,然后使用Python等语言发送请求、解析JSON数据,最后将数据应用于Web、App或分析场景,同时注意密钥安全、速率限制与错误处理。